@@ -196,13 +196,13 @@ macro define_ternary_dual_op(f, xyz_body, xy_body, xz_body, yz_body, x_body, y_b
196
196
end
197
197
198
198
# Support complex-valued functions such as `hankelh1`
199
- function dual_definition_retval (:: Val{T} , val:: Real , deriv:: Real , partial:: Partials ) where {T}
199
+ @inline function dual_definition_retval (:: Val{T} , val:: Real , deriv:: Real , partial:: Partials ) where {T}
200
200
return Dual {T} (val, deriv * partial)
201
201
end
202
- function dual_definition_retval (:: Val{T} , val:: Real , deriv1:: Real , partial1:: Partials , deriv2:: Real , partial2:: Partials ) where {T}
202
+ @inline function dual_definition_retval (:: Val{T} , val:: Real , deriv1:: Real , partial1:: Partials , deriv2:: Real , partial2:: Partials ) where {T}
203
203
return Dual {T} (val, _mul_partials (partial1, partial2, deriv1, deriv2))
204
204
end
205
- function dual_definition_retval (:: Val{T} , val:: Complex , deriv:: Union{Real,Complex} , partial:: Partials ) where {T}
205
+ @inline function dual_definition_retval (:: Val{T} , val:: Complex , deriv:: Union{Real,Complex} , partial:: Partials ) where {T}
206
206
reval, imval = reim (val)
207
207
if deriv isa Real
208
208
p = deriv * partial
@@ -212,7 +212,7 @@ function dual_definition_retval(::Val{T}, val::Complex, deriv::Union{Real,Comple
212
212
return Complex (Dual {T} (reval, rederiv * partial), Dual {T} (imval, imderiv * partial))
213
213
end
214
214
end
215
- function dual_definition_retval (:: Val{T} , val:: Complex , deriv1:: Union{Real,Complex} , partial1:: Partials , deriv2:: Union{Real,Complex} , partial2:: Partials ) where {T}
215
+ @inline function dual_definition_retval (:: Val{T} , val:: Complex , deriv1:: Union{Real,Complex} , partial1:: Partials , deriv2:: Union{Real,Complex} , partial2:: Partials ) where {T}
216
216
reval, imval = reim (val)
217
217
if deriv1 isa Real && deriv2 isa Real
218
218
p = _mul_partials (partial1, partial2, deriv1, deriv2)
0 commit comments