207
207
< div class ="pytorch-left-menu-search ">
208
208
209
209
< div class ="version ">
210
- < a href ='https://pytorch.org/docs/versions.html '> master (1.11.0a0+gitcf70466 ) ▼</ a >
210
+ < a href ='https://pytorch.org/docs/versions.html '> master (1.11.0a0+gitaa5dab0 ) ▼</ a >
211
211
</ div >
212
212
213
213
@@ -889,11 +889,11 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
889
889
< span class ="k "> else</ span > < span class ="p "> :</ span >
890
890
< span class ="k "> return</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> flip</ span > < span class ="p "> (</ span > < span class ="mi "> 0</ span > < span class ="p "> )</ span >
891
891
892
- < div class =" viewcode-block " id =" Tensor.norm " > < a class =" viewcode-back " href =" ../../generated/torch.Tensor.norm.html#torch.Tensor.norm " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> norm</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> p</ span > < span class ="o "> =</ span > < span class ="s2 "> "fro"</ span > < span class ="p "> ,</ span > < span class ="n "> dim</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> keepdim</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ,</ span > < span class ="n "> dtype</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ):</ span >
892
+ < span class ="k "> def</ span > < span class ="nf "> norm</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> p</ span > < span class ="o "> =</ span > < span class ="s2 "> "fro"</ span > < span class ="p "> ,</ span > < span class ="n "> dim</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> keepdim</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ,</ span > < span class ="n "> dtype</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ):</ span >
893
893
< span class ="sa "> r</ span > < span class ="sd "> """See :func:`torch.norm`"""</ span >
894
894
< span class ="k "> if</ span > < span class ="n "> has_torch_function_unary</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
895
895
< span class ="k "> return</ span > < span class ="n "> handle_torch_function</ span > < span class ="p "> (</ span > < span class ="n "> Tensor</ span > < span class ="o "> .</ span > < span class ="n "> norm</ span > < span class ="p "> ,</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,),</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> p</ span > < span class ="o "> =</ span > < span class ="n "> p</ span > < span class ="p "> ,</ span > < span class ="n "> dim</ span > < span class ="o "> =</ span > < span class ="n "> dim</ span > < span class ="p "> ,</ span > < span class ="n "> keepdim</ span > < span class ="o "> =</ span > < span class ="n "> keepdim</ span > < span class ="p "> ,</ span > < span class ="n "> dtype</ span > < span class ="o "> =</ span > < span class ="n "> dtype</ span > < span class ="p "> )</ span >
896
- < span class ="k "> return</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> norm</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> p</ span > < span class ="p "> ,</ span > < span class ="n "> dim</ span > < span class ="p "> ,</ span > < span class ="n "> keepdim</ span > < span class ="p "> ,</ span > < span class ="n "> dtype</ span > < span class ="o "> =</ span > < span class ="n "> dtype</ span > < span class ="p "> )</ span > </ div >
896
+ < span class ="k "> return</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> norm</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> p</ span > < span class ="p "> ,</ span > < span class ="n "> dim</ span > < span class ="p "> ,</ span > < span class ="n "> keepdim</ span > < span class ="p "> ,</ span > < span class ="n "> dtype</ span > < span class ="o "> =</ span > < span class ="n "> dtype</ span > < span class ="p "> )</ span >
897
897
898
898
< span class ="k "> def</ span > < span class ="nf "> lu</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> pivot</ span > < span class ="o "> =</ span > < span class ="kc "> True</ span > < span class ="p "> ,</ span > < span class ="n "> get_infos</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ):</ span >
899
899
< span class ="sa "> r</ span > < span class ="sd "> """See :func:`torch.lu`"""</ span >
@@ -1222,7 +1222,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
1222
1222
1223
1223
< span class ="k "> return</ span > < span class ="nb "> dict</ span > < span class ="p "> (</ span > < span class ="n "> typestr</ span > < span class ="o "> =</ span > < span class ="n "> typestr</ span > < span class ="p "> ,</ span > < span class ="n "> shape</ span > < span class ="o "> =</ span > < span class ="n "> shape</ span > < span class ="p "> ,</ span > < span class ="n "> strides</ span > < span class ="o "> =</ span > < span class ="n "> strides</ span > < span class ="p "> ,</ span > < span class ="n "> data</ span > < span class ="o "> =</ span > < span class ="n "> data</ span > < span class ="p "> ,</ span > < span class ="n "> version</ span > < span class ="o "> =</ span > < span class ="mi "> 2</ span > < span class ="p "> )</ span >
1224
1224
1225
- < div class =" viewcode-block " id =" Tensor.storage_type " > < a class =" viewcode-back " href =" ../../generated/torch.Tensor.storage_type.html#torch.Tensor.storage_type " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> storage_type</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
1225
+ < span class ="k "> def</ span > < span class ="nf "> storage_type</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
1226
1226
< span class ="sa "> r</ span > < span class ="sd "> """storage_type() -> type</ span >
1227
1227
1228
1228
< span class ="sd "> Returns the type of the underlying storage.</ span >
@@ -1231,7 +1231,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
1231
1231
< span class ="c1 "> # NB: this returns old fashioned TypedStorage, e.g., FloatStorage, as it</ span >
1232
1232
< span class ="c1 "> # would be pretty pointless otherwise (it would always return</ span >
1233
1233
< span class ="c1 "> # UntypedStorage)</ span >
1234
- < span class ="k "> return</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> storage</ span > < span class ="p "> ())</ span > </ div >
1234
+ < span class ="k "> return</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> storage</ span > < span class ="p "> ())</ span >
1235
1235
1236
1236
< span class ="k "> def</ span > < span class ="nf "> refine_names</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="o "> *</ span > < span class ="n "> names</ span > < span class ="p "> ):</ span >
1237
1237
< span class ="sa "> r</ span > < span class ="sd "> """Refines the dimension names of :attr:`self` according to :attr:`names`.</ span >
0 commit comments