|
| 1 | +------------------------------------------------------------------------ |
| 2 | +-- The Agda standard library |
| 3 | +-- |
| 4 | +-- Operations on Relations for Indexed sets |
| 5 | +------------------------------------------------------------------------ |
| 6 | + |
| 7 | +{-# OPTIONS --cubical-compatible --safe #-} |
| 8 | + |
| 9 | +module Function.Indexed.Bundles where |
| 10 | + |
| 11 | +open import Relation.Unary using (Pred) |
| 12 | +open import Function.Bundles using (_⟶_; _↣_; _↠_; _⤖_; _⇔_; _↩_; _↪_; _↩↪_; _↔_) |
| 13 | +open import Relation.Binary hiding (_⇔_) |
| 14 | +open import Level using (Level) |
| 15 | + |
| 16 | +private |
| 17 | + variable |
| 18 | + a b ℓ₁ ℓ₂ : Level |
| 19 | + |
| 20 | +------------------------------------------------------------------------ |
| 21 | +-- Bundles specialised for lifting relations to indexed sets |
| 22 | +------------------------------------------------------------------------ |
| 23 | + |
| 24 | +infix 3 _⟶ᵢ_ _↣ᵢ_ _↠ᵢ_ _⤖ᵢ_ _⇔ᵢ_ _↩ᵢ_ _↪ᵢ_ _↩↪ᵢ_ _↔ᵢ_ |
| 25 | +_⟶ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _ |
| 26 | +A ⟶ᵢ B = ∀ {i} → A i ⟶ B i |
| 27 | + |
| 28 | +_↣ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _ |
| 29 | +A ↣ᵢ B = ∀ {i} → A i ↣ B i |
| 30 | + |
| 31 | +_↠ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _ |
| 32 | +A ↠ᵢ B = ∀ {i} → A i ↠ B i |
| 33 | + |
| 34 | +_⤖ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _ |
| 35 | +A ⤖ᵢ B = ∀ {i} → A i ⤖ B i |
| 36 | + |
| 37 | +_⇔ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _ |
| 38 | +A ⇔ᵢ B = ∀ {i} → A i ⇔ B i |
| 39 | + |
| 40 | +_↩ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _ |
| 41 | +A ↩ᵢ B = ∀ {i} → A i ↩ B i |
| 42 | + |
| 43 | +_↪ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _ |
| 44 | +A ↪ᵢ B = ∀ {i} → A i ↪ B i |
| 45 | + |
| 46 | +_↩↪ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _ |
| 47 | +A ↩↪ᵢ B = ∀ {i} → A i ↩↪ B i |
| 48 | + |
| 49 | +_↔ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _ |
| 50 | +A ↔ᵢ B = ∀ {i} → A i ↔ B i |
0 commit comments