|
1 |
| -#include <stdio.h> |
| 1 | +#ifndef _GNU_SOURCE |
| 2 | +#define _GNU_SOURCE |
| 3 | +#endif |
| 4 | + |
| 5 | +#include "common.h" |
| 6 | +#include "llama.h" |
| 7 | +#include "build-info.h" |
| 8 | + |
| 9 | +#include <cassert> |
| 10 | +#include <cinttypes> |
| 11 | +#include <cmath> |
| 12 | +#include <cstdio> |
| 13 | +#include <cstring> |
| 14 | +#include <ctime> |
| 15 | +#include <fstream> |
| 16 | +#include <iostream> |
2 | 17 | #include <string>
|
3 | 18 | #include <vector>
|
4 | 19 |
|
5 |
| -#include "llama.h" |
| 20 | +#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) |
| 21 | +#include <signal.h> |
| 22 | +#include <unistd.h> |
| 23 | +#elif defined (_WIN32) |
| 24 | +#define WIN32_LEAN_AND_MEAN |
| 25 | +#define NOMINMAX |
| 26 | +#include <windows.h> |
| 27 | +#include <signal.h> |
| 28 | +#endif |
6 | 29 |
|
7 | 30 |
|
8 |
| -void generate_sequence(llama_context * ctx, int n_ctx, const std::vector<llama_token>& prompt_tokens, float temperature) { |
9 |
| - // print the tokens from the prompt |
10 |
| - for (llama_token id : prompt_tokens) { |
11 |
| - printf("%s", llama_token_to_str(ctx, id)); |
12 |
| - } |
13 |
| - fflush(stdout); |
14 | 31 |
|
15 |
| - // the maximum number of tokens to generate at a time |
16 |
| - // TODO: not supported, remove |
17 |
| - const int CUDA_MAX_TOKENS = 1; |
18 |
| - llama_token tokens_out[CUDA_MAX_TOKENS]; |
| 32 | +int main(int argc, char ** argv) |
| 33 | +{ |
| 34 | + gpt_params params; |
19 | 35 |
|
20 |
| - // current position in the context window |
21 |
| - int n_past = 0; |
| 36 | + //--------------------------------- |
| 37 | + // Print help : |
| 38 | + //--------------------------------- |
22 | 39 |
|
23 |
| - // number of tokens to generate |
24 |
| - int n_tokens_out; |
| 40 | + if ( argc == 1 || argv[1][0] == '-' ) |
| 41 | + { |
| 42 | + printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] ); |
| 43 | + return 1 ; |
| 44 | + } |
25 | 45 |
|
26 |
| - // list of tokens to evaluate |
27 |
| - // note that at most llama_context_params::n_batch tokens can be evaluated at a time |
28 |
| - std::vector<llama_token> token_list = prompt_tokens; |
| 46 | + //--------------------------------- |
| 47 | + // Load parameters : |
| 48 | + //--------------------------------- |
29 | 49 |
|
30 |
| - while (n_past < n_ctx) { |
31 |
| - // evaluate the tokens |
| 50 | + if ( argc >= 2 ) |
| 51 | + { |
| 52 | + params.model = argv[1]; |
| 53 | + } |
32 | 54 |
|
33 |
| - // llama_eval generates one token at a time |
34 |
| - n_tokens_out = 1; |
| 55 | + if ( argc >= 3 ) |
| 56 | + { |
| 57 | + params.prompt = argv[2]; |
| 58 | + } |
35 | 59 |
|
36 |
| - // number of threads to use for CPU evaluation - ignored if compiled with CUDA support |
37 |
| - const int n_threads = 4; |
38 |
| - // note: llama_eval is not compatible with GPU sampling |
39 |
| - if (llama_eval(ctx, token_list.data(), token_list.size(), n_past, n_threads)) { |
40 |
| - fprintf(stderr, "%s : failed to eval\n", __func__ ); |
41 |
| - exit(1); |
42 |
| - } |
| 60 | + if ( params.prompt.empty() ) |
| 61 | + { |
| 62 | + params.prompt = "Hello my name is"; |
| 63 | + } |
43 | 64 |
|
44 |
| - // perform sampling on the CPU |
45 |
| - float * logits = llama_get_logits(ctx); |
46 |
| - auto n_vocab = llama_n_vocab(ctx); |
| 65 | + //--------------------------------- |
| 66 | + // Init LLM : |
| 67 | + //--------------------------------- |
47 | 68 |
|
48 |
| - // initialize candidate array from logits |
49 |
| - std::vector<llama_token_data> candidates; |
50 |
| - candidates.reserve(n_vocab); |
51 |
| - for(llama_token token_id = 0 ; token_id < n_vocab ; token_id++) { |
52 |
| - candidates.push_back(llama_token_data{ token_id, logits[token_id], 0.0f}); |
53 |
| - } |
| 69 | + llama_backend_init(params.numa); |
54 | 70 |
|
55 |
| - llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; |
56 |
| - |
57 |
| - // sample token |
58 |
| - llama_sample_temperature(ctx, &candidates_p, temperature); |
59 |
| - tokens_out[0] = llama_sample_token(ctx, &candidates_p); |
| 71 | + llama_model * model; |
| 72 | + llama_context * ctx; |
60 | 73 |
|
61 |
| - // increment the position in the context window |
62 |
| - n_past += token_list.size() + n_tokens_out - 1; |
| 74 | + std::tie(model, ctx) = llama_init_from_gpt_params( params ); |
63 | 75 |
|
64 |
| - token_list.clear(); |
| 76 | + if ( model == NULL ) |
| 77 | + { |
| 78 | + fprintf( stderr , "%s: error: unable to load model\n" , __func__ ); |
| 79 | + return 1; |
| 80 | + } |
65 | 81 |
|
66 |
| - // print the new tokens |
67 |
| - for (int i = 0; i < n_tokens_out; i++) { |
68 |
| - llama_token new_token_id = tokens_out[i]; |
| 82 | + //--------------------------------- |
| 83 | + // Tokenize the prompt : |
| 84 | + //--------------------------------- |
69 | 85 |
|
70 |
| - // is it an end of stream ? |
71 |
| - if (new_token_id == llama_token_eos()) { |
72 |
| - fprintf(stderr, " [end of text]\n"); |
73 |
| - //return; |
74 |
| - } |
| 86 | + std::vector<llama_token> tokens_list; |
| 87 | + tokens_list = ::llama_tokenize( ctx , params.prompt , true ); |
75 | 88 |
|
76 |
| - // print the new token : |
77 |
| - printf("%s", llama_token_to_str(ctx, new_token_id)); |
78 |
| - } |
79 |
| - fflush(stdout); |
| 89 | + const int max_context_size = llama_n_ctx( ctx ); |
| 90 | + const int max_tokens_list_size = max_context_size - 4 ; |
80 | 91 |
|
81 |
| - // push the last new token for the next evaluation |
82 |
| - token_list.push_back(tokens_out[n_tokens_out - 1]); |
| 92 | + if ( (int)tokens_list.size() > max_tokens_list_size ) |
| 93 | + { |
| 94 | + fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" , |
| 95 | + __func__ , (int)tokens_list.size() , max_tokens_list_size ); |
| 96 | + return 1; |
83 | 97 | }
|
84 |
| -} |
85 | 98 |
|
86 |
| -int main(int argc, char ** argv) { |
87 |
| - if (argc < 2 || argv[1][0] == '-') { |
88 |
| - printf("usage: %s <model> <n_ctx> <n_gens> <temp> [prompt]\n", argv[0]); |
89 |
| - printf(" note: passing a temp parameter will enable GPU sampling\n"); |
90 |
| - return 1 ; |
91 |
| - } |
| 99 | + fprintf( stderr, "\n\n" ); |
92 | 100 |
|
93 |
| - std::string model = argv[1]; |
94 |
| - struct llama_context_params lparams = llama_context_default_params(); |
| 101 | + // Print the tokens from the prompt : |
95 | 102 |
|
96 |
| - if (argc >= 3) { |
97 |
| - lparams.n_ctx = std::stoi(argv[2]); |
98 |
| - } else { |
99 |
| - lparams.n_ctx = 512; |
| 103 | + for( auto id : tokens_list ) |
| 104 | + { |
| 105 | + printf( "%s" , llama_token_to_str( ctx , id ) ); |
100 | 106 | }
|
101 | 107 |
|
102 |
| - int n_gens; |
103 |
| - if (argc >= 4) { |
104 |
| - n_gens = std::stoi(argv[3]); |
105 |
| - } else { |
106 |
| - n_gens = 1; |
107 |
| - } |
| 108 | + fflush(stdout); |
108 | 109 |
|
109 |
| - float temperature; |
110 | 110 |
|
111 |
| - if (argc >= 5) { |
112 |
| - temperature = std::stof(argv[4]); |
113 |
| - } else { |
114 |
| - temperature = 0.8f; |
115 |
| - } |
| 111 | + //--------------------------------- |
| 112 | + // Main prediction loop : |
| 113 | + //--------------------------------- |
116 | 114 |
|
117 |
| - std::string prompt; |
118 |
| - if (argc >= 6) { |
119 |
| - prompt = argv[5]; |
120 |
| - } else { |
121 |
| - prompt = "Hello my name is"; |
122 |
| - } |
| 115 | + // The LLM keeps a contextual cache memory of previous token evaluation. |
| 116 | + // Usually, once this cache is full, it is required to recompute a compressed context based on previous |
| 117 | + // tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist |
| 118 | + // example, we will just stop the loop once this cache is full or once an end of stream is detected. |
123 | 119 |
|
124 |
| - // initialize llama.cpp |
125 |
| - bool numa = false; |
126 |
| - llama_init_backend(numa); |
| 120 | + while ( llama_get_kv_cache_token_count( ctx ) < max_context_size ) |
| 121 | + { |
| 122 | + //--------------------------------- |
| 123 | + // Evaluate the tokens : |
| 124 | + //--------------------------------- |
127 | 125 |
|
128 |
| - llama_model * lmodel = llama_load_model_from_file(model.c_str(), lparams); |
129 |
| - if (lmodel == NULL) { |
130 |
| - fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, model.c_str()); |
131 |
| - return 1; |
132 |
| - } |
| 126 | + if ( llama_eval( ctx , tokens_list.data() , tokens_list.size() , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) ) |
| 127 | + { |
| 128 | + fprintf( stderr, "%s : failed to eval\n" , __func__ ); |
| 129 | + return 1; |
| 130 | + } |
133 | 131 |
|
134 |
| - llama_context * ctx = llama_new_context_with_model(lmodel, lparams); |
135 |
| - if (ctx == NULL) { |
136 |
| - fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, model.c_str()); |
137 |
| - llama_free_model(lmodel); |
138 |
| - return 1; |
139 |
| - } |
| 132 | + tokens_list.clear(); |
140 | 133 |
|
141 |
| - // tokenize the prompt |
142 |
| - std::vector<llama_token> token_list(lparams.n_ctx); |
143 |
| - int prompt_tokens = llama_tokenize(ctx, prompt.c_str(), token_list.data(), token_list.size(), true); |
144 |
| - if (prompt_tokens <= 0) { |
145 |
| - fprintf(stderr, "%s: error: unable to tokenize prompt\n", __func__); |
146 |
| - return 1; |
147 |
| - } |
| 134 | + //--------------------------------- |
| 135 | + // Select the best prediction : |
| 136 | + //--------------------------------- |
148 | 137 |
|
149 |
| - token_list.resize(prompt_tokens); |
| 138 | + llama_token new_token_id = 0; |
150 | 139 |
|
151 |
| - const int max_context_size = llama_n_ctx(ctx); |
152 |
| - const int max_tokens_list_size = max_context_size - 4 ; |
| 140 | + auto logits = llama_get_logits( ctx ); |
| 141 | + auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens) |
153 | 142 |
|
154 |
| - if ((int)token_list.size() > max_tokens_list_size) { |
155 |
| - fprintf( stderr, "%s: error: prompt too long (%d tokens, max %d)\n" , |
156 |
| - __func__, (int)token_list.size(), max_tokens_list_size ); |
157 |
| - return 1; |
158 |
| - } |
| 143 | + std::vector<llama_token_data> candidates; |
| 144 | + candidates.reserve( n_vocab ); |
159 | 145 |
|
160 |
| - fprintf(stderr, "\n\n"); |
| 146 | + for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ ) |
| 147 | + { |
| 148 | + candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } ); |
| 149 | + } |
161 | 150 |
|
162 |
| - // generate the sequences |
163 |
| - for (int i = 0; i < n_gens; i++) { |
164 |
| - printf("==== GENERATION %d ====\n", i + 1); |
165 |
| - generate_sequence(ctx, max_context_size, token_list, temperature); |
166 |
| - printf("\n\n"); |
167 |
| - } |
| 151 | + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; |
| 152 | + |
| 153 | + // Select it using the "Greedy sampling" method : |
| 154 | + new_token_id = llama_sample_token_greedy( ctx , &candidates_p ); |
| 155 | + |
| 156 | + |
| 157 | + // is it an end of stream ? |
| 158 | + if ( new_token_id == llama_token_eos() ) |
| 159 | + { |
| 160 | + fprintf(stderr, " [end of text]\n"); |
| 161 | + break; |
| 162 | + } |
| 163 | + |
| 164 | + // Print the new token : |
| 165 | + printf( "%s" , llama_token_to_str( ctx , new_token_id ) ); |
| 166 | + fflush( stdout ); |
| 167 | + |
| 168 | + // Push this new token for next evaluation : |
| 169 | + tokens_list.push_back( new_token_id ); |
168 | 170 |
|
169 |
| - llama_print_timings(ctx); |
170 |
| - llama_free(ctx); |
| 171 | + } // wend of main loop |
| 172 | + |
| 173 | + llama_free( ctx ); |
| 174 | + llama_free_model( model ); |
| 175 | + |
| 176 | + llama_backend_free(); |
171 | 177 |
|
172 | 178 | return 0;
|
173 | 179 | }
|
| 180 | + |
| 181 | +// EOF |
0 commit comments