diff --git a/mlir/lib/Dialect/Tensor/IR/TensorDialect.cpp b/mlir/lib/Dialect/Tensor/IR/TensorDialect.cpp index 8af087cbf0f61..e7d8f52d309c9 100644 --- a/mlir/lib/Dialect/Tensor/IR/TensorDialect.cpp +++ b/mlir/lib/Dialect/Tensor/IR/TensorDialect.cpp @@ -49,8 +49,8 @@ void TensorDialect::initialize() { >(); addInterfaces(); declarePromisedInterfaces< - bufferization::BufferizableOpInterface, CastOp, CollapseShapeOp, DimOp, - EmptyOp, ExpandShapeOp, ExtractSliceOp, ExtractOp, FromElementsOp, + bufferization::BufferizableOpInterface, CastOp, CollapseShapeOp, ConcatOp, + DimOp, EmptyOp, ExpandShapeOp, ExtractSliceOp, ExtractOp, FromElementsOp, GenerateOp, InsertOp, InsertSliceOp, PadOp, ParallelInsertSliceOp, RankOp, ReshapeOp, SplatOp>(); declarePromisedInterfaces { + + bool bufferizesToAllocation(Operation *op, Value value) const { return true; } + + bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand, + const AnalysisState &state) const { + return false; + } + + bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand, + const AnalysisState &state) const { + return true; + } + + AliasingValueList getAliasingValues(Operation *op, OpOperand &opOperand, + const AnalysisState &state) const { + return {}; + } + + LogicalResult bufferize(Operation *op, RewriterBase &rewriter, + const BufferizationOptions &options) const { + OpBuilder::InsertionGuard g(rewriter); + auto concatOp = cast(op); + + // Allocate memory. + Location loc = op->getLoc(); + FailureOr tensorAlloc = allocateTensorForShapedValue( + rewriter, loc, concatOp.getResult(), options, + /*copy=*/false); + if (failed(tensorAlloc)) + return failure(); + auto tensorType = cast(tensorAlloc->getType()); + + // TODO: Implement memory space for this op. + if (options.defaultMemorySpaceFn(tensorType) != Attribute()) + return op->emitError("memory space not implemented yet"); + + MemRefLayoutAttrInterface layout; + MemRefType memrefType = + MemRefType::get(concatOp.getResultType().getShape(), + concatOp.getResultType().getElementType(), layout); + Value dstBuffer = rewriter.create( + op->getLoc(), memrefType, *tensorAlloc); + + // Extract the dimension for the concat op + uint64_t concatDim = concatOp.getDim(); + bool dynamicConcatDim = false; + + SmallVector offsets(tensorType.getRank(), + rewriter.getIndexAttr(0)); + SmallVector strides(tensorType.getRank(), + rewriter.getIndexAttr(1)); + SmallVector sizes; + + for (const auto &[dimIdx, dimSize] : + llvm::enumerate(tensorType.getShape())) { + if (dimSize == ShapedType::kDynamic) { + auto dimOp = rewriter.create(loc, dstBuffer, dimIdx); + sizes.push_back(dimOp.getResult()); + if (dimIdx == concatDim) + dynamicConcatDim = true; + } else { + sizes.push_back(rewriter.getIndexAttr(dimSize)); + } + } + + int64_t concatDimOffset = 0; + std::optional dynamicOffset; + std::optional dynamicSize; + if (dynamicConcatDim) { + // One or more operands have dynamic size, so we must accumulate the + // offset with arith ops. + dynamicOffset = rewriter.create(loc, 0); + } + + for (auto operand : concatOp.getInputs()) { + // Get the buffer for the operand. + FailureOr srcBuffer = getBuffer(rewriter, operand, options); + if (failed(srcBuffer)) + return failure(); + + // Each operand may have a different size along the concat dimension, + // so the offset on that axis must accumulate through the loop, and the + // size must change to the size of the current operand. + auto operandTensorType = cast(operand.getType()); + int64_t operandConcatDimSize = operandTensorType.getDimSize(concatDim); + + if (dynamicConcatDim) { + offsets[concatDim] = dynamicOffset.value(); + dynamicSize = rewriter.create(loc, *srcBuffer, concatDim) + .getResult(); + sizes[concatDim] = dynamicSize.value(); + } else { + sizes[concatDim] = rewriter.getIndexAttr(operandConcatDimSize); + offsets[concatDim] = rewriter.getIndexAttr(concatDimOffset); + } + + // Create a subview of the destination buffer. + auto dstMemrefType = cast(memrefType); + MemRefType subviewMemRefType = + memref::SubViewOp::inferRankReducedResultType( + operandTensorType.getShape(), dstMemrefType, offsets, sizes, + strides); + Value subview = rewriter.create( + loc, subviewMemRefType, dstBuffer, offsets, sizes, strides); + + // Copy the source buffer into the destination subview. + if (failed(options.createMemCpy(rewriter, loc, *srcBuffer, subview))) + return failure(); + + if (dynamicConcatDim) { + dynamicOffset = rewriter.create( + loc, dynamicOffset.value(), dynamicSize.value()); + } else { + concatDimOffset += operandConcatDimSize; + } + } + + replaceOpWithBufferizedValues(rewriter, op, dstBuffer); + return success(); + } +}; + } // namespace } // namespace tensor } // namespace mlir @@ -1057,6 +1185,7 @@ void mlir::tensor::registerBufferizableOpInterfaceExternalModels( registry.addExtension(+[](MLIRContext *ctx, tensor::TensorDialect *dialect) { CastOp::attachInterface(*ctx); CollapseShapeOp::attachInterface(*ctx); + ConcatOp::attachInterface(*ctx); DimOp::attachInterface(*ctx); EmptyOp::attachInterface(*ctx); ExpandShapeOp::attachInterface(*ctx); diff --git a/mlir/test/Dialect/Tensor/bufferize.mlir b/mlir/test/Dialect/Tensor/bufferize.mlir index 567c4abea488e..e9c3ba7e3b970 100644 --- a/mlir/test/Dialect/Tensor/bufferize.mlir +++ b/mlir/test/Dialect/Tensor/bufferize.mlir @@ -615,6 +615,97 @@ func.func @tensor.splat(%f: f32) -> tensor<10x2x4xf32> { // ----- +// CHECK-LABEL: func @tensor.concat( +// CHECK-SAME: %[[F:.*]]: tensor<8xf32>) +// CHECK: %[[F_MEMREF:.*]] = bufferization.to_buffer %[[F]] +// CHECK: %[[ALLOC:.*]] = memref.alloc() {{.*}} : memref<16xf32> +// CHECK: %[[SUBVIEW1:.*]] = memref.subview %[[ALLOC]][0] [8] [1] +// CHECK: memref.copy %[[F_MEMREF]], %[[SUBVIEW1]] +// CHECK: %[[SUBVIEW2:.*]] = memref.subview %[[ALLOC]][8] [8] [1] +// CHECK: memref.copy %[[F_MEMREF]], %[[SUBVIEW2]] +// CHECK: %[[RET:.*]] = bufferization.to_tensor %[[ALLOC]] +// CHECK: return %[[RET]] +// CHECK: } +func.func @tensor.concat(%f: tensor<8xf32>) -> tensor<16xf32> { + %t = tensor.concat dim(0) %f, %f : (tensor<8xf32>, tensor<8xf32>) -> tensor<16xf32> + return %t : tensor<16xf32> +} + +// ----- + +// CHECK-LABEL: func @tensor.concat_different_shapes( +// CHECK-SAME: %[[F:.*]]: tensor<8x4xf32> +// CHECK-SAME: %[[G:.*]]: tensor<8x5xf32> +// CHECK-DAG: %[[F_MEMREF:.*]] = bufferization.to_buffer %[[F]] +// CHECK-DAG: %[[G_MEMREF:.*]] = bufferization.to_buffer %[[G]] +// CHECK: %[[ALLOC:.*]] = memref.alloc() {{.*}} : memref<8x9xf32> +// CHECK: %[[SUBVIEW1:.*]] = memref.subview %[[ALLOC]][0, 0] [8, 4] [1, 1] +// CHECK: memref.copy %[[F_MEMREF]], %[[SUBVIEW1]] +// CHECK: %[[SUBVIEW2:.*]] = memref.subview %[[ALLOC]][0, 4] [8, 5] [1, 1] +// CHECK: memref.copy %[[G_MEMREF]], %[[SUBVIEW2]] +// CHECK: %[[RET:.*]] = bufferization.to_tensor %[[ALLOC]] +// CHECK: return %[[RET]] +// CHECK: } +func.func @tensor.concat_different_shapes(%f: tensor<8x4xf32>, %g: tensor<8x5xf32>) -> tensor<8x9xf32> { + %t = tensor.concat dim(1) %f, %g : (tensor<8x4xf32>, tensor<8x5xf32>) -> tensor<8x9xf32> + return %t : tensor<8x9xf32> +} + +// ----- + +// CHECK-LABEL: func @tensor.concat_dynamic( +// CHECK-SAME: %[[F:.*]]: tensor<8x?xf32>, +// CHECK-SAME: %[[G:.*]]: tensor<8x?xf32> +// CHECK-DAG: %[[F_MEMREF:.*]] = bufferization.to_buffer %[[F]] +// CHECK-DAG: %[[G_MEMREF:.*]] = bufferization.to_buffer %[[G]] +// CHECK-DAG: %[[c1:.*]] = arith.constant 1 : index +// CHECK-DAG: %[[F_DIM:.*]] = memref.dim %[[F_MEMREF]], %[[c1]] +// CHECK-DAG: %[[G_DIM:.*]] = memref.dim %[[G_MEMREF]], %[[c1]] +// CHECK: %[[ALLOC:.*]] = memref.alloc +// CHECK-SAME: memref<8x?xf32> +// CHECK-DAG: %[[OFFSET:.*]] = arith.constant 0 : index +// CHECK: %[[SUBVIEW1:.*]] = memref.subview %[[ALLOC]][0, %[[OFFSET]]] [8, %[[F_DIM]]] [1, 1] +// CHECK: memref.copy %[[F_MEMREF]], %[[SUBVIEW1]] +// CHECK: %[[OFFSET_2:.*]] = arith.addi %[[OFFSET]], %[[F_DIM]] : index +// CHECK: %[[SUBVIEW2:.*]] = memref.subview %[[ALLOC]][0, %[[OFFSET_2]]] [8, %[[G_DIM]]] [1, 1] +// CHECK: memref.copy %[[G_MEMREF]], %[[SUBVIEW2]] +// CHECK: %[[RET:.*]] = bufferization.to_tensor %[[ALLOC]] +// CHECK: return %[[RET]] +// CHECK: } +func.func @tensor.concat_dynamic(%f: tensor<8x?xf32>, %g: tensor<8x?xf32>) -> tensor<8x?xf32> { + %t = tensor.concat dim(1) %f, %g : (tensor<8x?xf32>, tensor<8x?xf32>) -> tensor<8x?xf32> + return %t : tensor<8x?xf32> +} + +// ----- + +// CHECK-LABEL: func @tensor.concat_dynamic_nonconcat_dim( +// CHECK-SAME: %[[F:.*]]: tensor, +// CHECK-SAME: %[[G:.*]]: tensor +// CHECK-DAG: %[[F_MEMREF:.*]] = bufferization.to_buffer %[[F]] +// CHECK-DAG: %[[G_MEMREF:.*]] = bufferization.to_buffer %[[G]] +// CHECK-DAG: %[[c1:.*]] = arith.constant 1 : index +// CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index +// CHECK-DAG: %[[F_DIM:.*]] = memref.dim %[[F_MEMREF]], %[[c1]] +// CHECK-DAG: %[[G_DIM:.*]] = memref.dim %[[G_MEMREF]], %[[c1]] +// CHECK: %[[ALLOC:.*]] = memref.alloc +// CHECK-SAME: memref +// CHECK-DAG: %[[NON_CONCAT_DIM:.*]] = memref.dim %[[ALLOC]], %[[c0]] +// CHECK: %[[SUBVIEW1:.*]] = memref.subview %[[ALLOC]][0, %[[c0]]] [%[[NON_CONCAT_DIM]], %[[F_DIM]]] [1, 1] +// CHECK: memref.copy %[[F_MEMREF]], %[[SUBVIEW1]] +// CHECK: %[[OFFSET_2:.*]] = arith.addi %[[c0]], %[[F_DIM]] : index +// CHECK: %[[SUBVIEW2:.*]] = memref.subview %[[ALLOC]][0, %[[OFFSET_2]]] [%[[NON_CONCAT_DIM]], %[[G_DIM]]] [1, 1] +// CHECK: memref.copy %[[G_MEMREF]], %[[SUBVIEW2]] +// CHECK: %[[RET:.*]] = bufferization.to_tensor %[[ALLOC]] +// CHECK: return %[[RET]] +// CHECK: } +func.func @tensor.concat_dynamic_nonconcat_dim(%f: tensor, %g: tensor) -> tensor { + %t = tensor.concat dim(1) %f, %g : (tensor, tensor) -> tensor + return %t : tensor +} + +// ----- + // CHECK-LABEL: func @tensor.splat_dynamic( // CHECK-SAME: %[[F:[a-zA-Z0-9_]+]]: f32 // CHECK-SAME: %[[M:[a-zA-Z0-9_]+]]: index