-
-
Notifications
You must be signed in to change notification settings - Fork 18.7k
Description
Code Sample, a copy-pastable example if possible
In [2]: s = pd.Series(range(8), index=pd.MultiIndex.from_product([[1,2], [3,4], [3,4]],
names=['a', 'b', 'c']))
In [3]: s.loc[s.index] # Works as expected
Out[3]:
a b c
1 3 3 0
4 1
4 3 2
4 3
2 3 3 4
4 5
4 3 6
4 7
dtype: int64
In [4]: s.loc[s.iloc[2:-1].index] # Works as expected
Out[4]:
a b c
1 4 3 2
4 3
2 3 3 4
4 5
4 3 6
dtype: int64
In [5]: s.loc[s.index.droplevel('c')] # Just reindexes... weird
Out[5]:
1 3 NaN
3 NaN
4 NaN
4 NaN
2 3 NaN
3 NaN
4 NaN
4 NaN
dtype: float64
In [6]: s.loc[s.index.droplevel(['b', 'c']), :] # Works (flat index)
Out[6]:
a b c
1 3 3 0
4 1
4 3 2
4 3
2 3 3 4
4 5
4 3 6
4 7
dtype: int64
In [7]: s.loc[s.index.droplevel(['b', 'c'])] #... but fails if I use the shortened notation!
[...]
TypeError: unhashable type: 'Int64Index'
In [8]: s.loc[s.swaplevel('b', 'c')] # Works
Out[8]:
a b c
1 3 3 0
4 1
4 3 2
4 3
2 3 3 4
4 5
4 3 6
4 7
dtype: int64
In [9]: s.loc[s.index.swaplevel('b', 'c')] # Different result! (reindexes)
Out[9]:
a c b
1 3 3 0
4 3 2
3 4 1
4 4 3
2 3 3 4
4 3 6
3 4 5
4 4 7
dtype: int64
In [10]: s.loc[pd.MultiIndex.from_product([[1,2], [3], [4]],
names=['a', 'c', 'b'])] # Does not respect column names!
Out[10]:
a c b
1 3 4 1
2 3 4 5
dtype: int64
Problem description
This clearly needs a unified approach (and I can try).
Expected Output
I guess most expected outputs above are obvious, except for In [10]:
(and maybe In [5]:
, which however is already discussed elsewhere). That is: it is not obvious whether level names in the indexer should be matched to level names in the indexed, when both are set (see this comment). It would probably be more pandas
-ish if they were.
In other terms, while there is no doubt that
Out[10]:
a c b
1 3 4 1
2 3 4 5
dtype: int64
is wrong, we must decide whether we want
Out[10]:
a b c
1 3 4 1
2 3 4 5
dtype: int64
or
Out[10]:
a b c
1 4 3 2
2 4 3 6
dtype: int64
Output of pd.show_versions()
pandas: 0.19.0+478.g12f2c6a
pytest: 3.0.6
pip: 8.1.2
setuptools: 28.0.0
Cython: 0.23.4
numpy: 1.12.0
scipy: 0.18.1
xarray: None
IPython: 5.1.0.dev
sphinx: 1.4.8
patsy: 0.3.0-dev
dateutil: 2.5.3
pytz: 2015.7
blosc: None
bottleneck: 1.2.0
tables: 3.2.2
numexpr: 2.6.0
feather: None
matplotlib: 2.0.0rc2
openpyxl: 2.3.0
xlrd: 1.0.0
xlwt: 1.1.2
xlsxwriter: 0.9.3
lxml: 3.6.4
bs4: 4.5.1
html5lib: 0.999
httplib2: 0.9.1
apiclient: 1.5.2
sqlalchemy: 1.0.15
pymysql: None
psycopg2: None
jinja2: 2.8
s3fs: None
pandas_datareader: 0.2.1