-
-
Notifications
You must be signed in to change notification settings - Fork 18.7k
Closed
Labels
IntervalInterval data typeInterval data typeNeeds TestsUnit test(s) needed to prevent regressionsUnit test(s) needed to prevent regressionsgood first issue
Milestone
Description
It seems that this comparison is now failing on master when it was working in 0.25.1. Need to look a bit more, but I don't think it's specific to this operation.
import pandas as pd
s = pd.Series([pd.Interval(0, 1), pd.Interval(1, 2)], dtype="interval")
s == "a"
0.25.1
0 False
1 False
dtype: bool
master
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-4-3a654234a428> in <module>
----> 1 s == "a"
~/pandas/pandas/core/ops/__init__.py in wrapper(self, other)
527 rvalues = extract_array(other, extract_numpy=True)
528
--> 529 res_values = comparison_op(lvalues, rvalues, op)
530
531 return _construct_result(self, res_values, index=self.index, name=res_name)
~/pandas/pandas/core/ops/array_ops.py in comparison_op(left, right, op)
253
254 if should_extension_dispatch(lvalues, rvalues):
--> 255 res_values = dispatch_to_extension_op(op, lvalues, rvalues)
256
257 elif is_scalar(rvalues) and isna(rvalues):
~/pandas/pandas/core/ops/dispatch.py in dispatch_to_extension_op(op, left, right, keep_null_freq)
124 # a Series or Index.
125
--> 126 if left.dtype.kind in "mM" and isinstance(left, np.ndarray):
127 # We need to cast datetime64 and timedelta64 ndarrays to
128 # DatetimeArray/TimedeltaArray. But we avoid wrapping others in
TypeError: 'in <string>' requires string as left operand, not NoneType
@jbrockmendel Is the fix for this as simple as (say) setting the kind
to "O"
here https://github.com/pandas-dev/pandas/blob/master/pandas/core/dtypes/dtypes.py#L975? It looks like we're assuming the dtype
has a kind
attribute when it doesn't.
Metadata
Metadata
Assignees
Labels
IntervalInterval data typeInterval data typeNeeds TestsUnit test(s) needed to prevent regressionsUnit test(s) needed to prevent regressionsgood first issue