diff --git a/pandas/core/arrays/datetimelike.py b/pandas/core/arrays/datetimelike.py index f86b307e5ede3..47b138a9e1604 100644 --- a/pandas/core/arrays/datetimelike.py +++ b/pandas/core/arrays/datetimelike.py @@ -499,9 +499,6 @@ def __setitem__( value = self._unbox_scalar(value) elif is_valid_nat_for_dtype(value, self.dtype): value = iNaT - elif not isna(value) and lib.is_integer(value) and value == iNaT: - # exclude misc e.g. object() and any NAs not allowed above - value = iNaT else: msg = ( "'value' should be a '{scalar}', 'NaT', or array of those. " diff --git a/pandas/tests/arrays/test_datetimelike.py b/pandas/tests/arrays/test_datetimelike.py index d9646feaf661e..ffda2f4de2700 100644 --- a/pandas/tests/arrays/test_datetimelike.py +++ b/pandas/tests/arrays/test_datetimelike.py @@ -682,15 +682,15 @@ def test_casting_nat_setitem_array(array, casting_nats): [ ( pd.TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data, - (np.datetime64("NaT", "ns"),), + (np.datetime64("NaT", "ns"), pd.NaT.value), ), ( pd.date_range("2000-01-01", periods=3, freq="D")._data, - (np.timedelta64("NaT", "ns"),), + (np.timedelta64("NaT", "ns"), pd.NaT.value), ), ( pd.period_range("2000-01-01", periods=3, freq="D")._data, - (np.datetime64("NaT", "ns"), np.timedelta64("NaT", "ns")), + (np.datetime64("NaT", "ns"), np.timedelta64("NaT", "ns"), pd.NaT.value), ), ], ids=lambda x: type(x).__name__, diff --git a/pandas/tests/test_base.py b/pandas/tests/test_base.py index d75016824d6cf..c760c75e44f6b 100644 --- a/pandas/tests/test_base.py +++ b/pandas/tests/test_base.py @@ -418,7 +418,7 @@ def test_value_counts_unique_nunique_null(self, null_obj): values = o._shallow_copy(v) else: o = o.copy() - o[0:2] = iNaT + o[0:2] = pd.NaT values = o._values elif needs_i8_conversion(o):