diff --git a/word_language_model/README.md b/word_language_model/README.md index 254b726585..54d53cf0f9 100644 --- a/word_language_model/README.md +++ b/word_language_model/README.md @@ -1,5 +1,15 @@ # Word-level Language Modeling using RNN and Transformer +## Requirements + +Just running the following command to get started. Actually we just need the torch. + +```bash +pip install -r requirements.txt +``` + +## Usage + This example trains a multi-layer RNN (Elman, GRU, or LSTM) or Transformer on a language modeling task. By default, the training script uses the Wikitext-2 dataset, provided. The trained model can then be used by the generate script to generate new text. @@ -54,3 +64,19 @@ python main.py --cuda --emsize 650 --nhid 650 --dropout 0.5 --epochs 40 --tied python main.py --cuda --emsize 1500 --nhid 1500 --dropout 0.65 --epochs 40 python main.py --cuda --emsize 1500 --nhid 1500 --dropout 0.65 --epochs 40 --tied ``` + +To generate samples from the default model checkpoint, just use the the `generate.py` script, which accepts the following arguments: + +```bash +optional arguments: + -h, --help show this help message and exit + --data DATA location of the data corpus + --checkpoint MODEL model checkpoint to use + --outf OUTPUT output file for generated text + --words WORDS number of words to generate + --seed SEED random seed + --cuda use CUDA + --mps enable GPU on macOS + --temperature TEMP temperature - higher will increase diversity + --log-interval N report interval +```