Skip to content

Commit 2e6d0cf

Browse files
author
Guanheng Zhang
committed
checkpoint
1 parent 796c784 commit 2e6d0cf

File tree

1 file changed

+6
-15
lines changed

1 file changed

+6
-15
lines changed

beginner_source/transformer_tutorial.py

Lines changed: 6 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,6 @@ def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
5353
super(TransformerModel, self).__init__()
5454
from torch.nn import TransformerEncoder, TransformerEncoderLayer
5555
self.model_type = 'Transformer'
56-
self.src_mask = None
5756
self.pos_encoder = PositionalEncoding(ninp, dropout)
5857
encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
5958
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
@@ -63,7 +62,7 @@ def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
6362

6463
self.init_weights()
6564

66-
def _generate_square_subsequent_mask(self, sz):
65+
def generate_square_subsequent_mask(self, sz):
6766
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
6867
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
6968
return mask
@@ -74,18 +73,12 @@ def init_weights(self):
7473
self.decoder.bias.data.zero_()
7574
self.decoder.weight.data.uniform_(-initrange, initrange)
7675

77-
def forward(self, src):
78-
if self.src_mask is None or self.src_mask.size(0) != len(src):
79-
device = src.device
80-
mask = self._generate_square_subsequent_mask(len(src)).to(device)
81-
self.src_mask = mask
82-
76+
def forward(self, src, src_mask):
8377
src = self.encoder(src) * math.sqrt(self.ninp)
8478
src = self.pos_encoder(src)
85-
output = self.transformer_encoder(src, self.src_mask)
79+
output = self.transformer_encoder(src, src_mask)
8680
output = self.decoder(output)
87-
return F.log_softmax(output, dim=-1)
88-
81+
return output
8982

9083
######################################################################
9184
# ``PositionalEncoding`` module injects some information about the
@@ -113,7 +106,6 @@ def forward(self, x):
113106
x = x + self.pe[:x.size(0), :]
114107
return self.dropout(x)
115108

116-
117109
######################################################################
118110
# Load data
119111
# ---------
@@ -200,15 +192,14 @@ def get_batch(batch_data):
200192
# equal to the length of the vocab object.
201193
#
202194

203-
ntokens = len(TEXT.vocab.stoi) # the size of vocabulary
195+
ntokens = len(vocab.stoi) # the size of vocabulary
204196
emsize = 200 # embedding dimension
205197
nhid = 200 # the dimension of the feedforward network model in nn.TransformerEncoder
206198
nlayers = 2 # the number of nn.TransformerEncoderLayer in nn.TransformerEncoder
207-
nhead = 2 # the number of heads in the multiheadattention models
199+
nhead = 2 # the number of heads in the multiheadattention models
208200
dropout = 0.2 # the dropout value
209201
model = TransformerModel(ntokens, emsize, nhead, nhid, nlayers, dropout).to(device)
210202

211-
212203
######################################################################
213204
# Run the model
214205
# -------------

0 commit comments

Comments
 (0)