Skip to content
This repository was archived by the owner on Feb 5, 2019. It is now read-only.

Rust llvm 2015 01 26 #26

Closed
wants to merge 10,000 commits into from
Closed

Rust llvm 2015 01 26 #26

wants to merge 10,000 commits into from

Conversation

richo
Copy link

@richo richo commented Jan 27, 2015

RKSimon and others added 30 commits January 21, 2015 00:02
…sts. NFC.

Changed the AVX1 tests register spill tail call to return a xmm like the SSE42 version - makes doing diffs between them a lot easier without affecting the spills themselves.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226623 91177308-0d34-0410-b5e6-96231b3b80d8
elements and the ordering is sane and cleanup the accessors.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226627 91177308-0d34-0410-b5e6-96231b3b80d8
a more direct approach: a type-erased glorified function pointer. Now we
can pass a function pointer into this for the easy case and we can even
pass a lambda into it in the interesting case in the instruction
combiner.

I'll be using this shortly to simplify the interfaces to InstCombiner,
but this helps pave the way and seems like a better design for the
libcall simplifier utility.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226640 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the assembler check their size and removes a hack from the disassembler to avoid sign extending the immediate.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226645 91177308-0d34-0410-b5e6-96231b3b80d8
…ome patterns. I think it actually went i32->iPtr->i32 in some of these cases.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226647 91177308-0d34-0410-b5e6-96231b3b80d8
…or 2 instructions for mips r6 it crashes as the access to operands array is out of range. This patch adds dedicated decoder method that properly handles decoding of these instructions.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226652 91177308-0d34-0410-b5e6-96231b3b80d8
SimplifyLibCalls utility by sinking it into the specific call part of
the combiner.

This will avoid us needing to do any contortions to build this object in
a subsequent refactoring I'm doing and seems generally better factored.
We don't need this utility everywhere and it carries no interesting
state so we might as well build it on demand.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226654 91177308-0d34-0410-b5e6-96231b3b80d8
Because in its primary function pass the combiner is run repeatedly over
the same function until doing so produces no changes, it is essentially
to not re-allocate the worklist. However, as a utility, the more common
pattern would be to put a limited set of instructions in the worklist
rather than the entire function body. That is also the more likely
pattern when used by the new pass manager.

The result is a very light weight combiner that does the visiting with
a separable worklist. This can then be wrapped up in a helper function
for users that want a combiner utility, or as I have here it can be
wrapped up in a pass which manages the iterations used when combining an
entire function's instructions.

Hopefully this removes some of the worst of the interface warts that
became apparant with the last patch here. However, there is clearly more
work. I've again left some FIXMEs for the most egregious. The ones that
stick out to me are the exposure of the worklist and IR builder as
public members, and the use of pointers rather than references. However,
fixing these is likely to be much more mechanical and less interesting
so I didn't want to touch them in this patch.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226655 91177308-0d34-0410-b5e6-96231b3b80d8
Implement microMIPS 16-bit unconditional branch instruction B.

Implemented 16-bit microMIPS unconditional instruction has real name B16, and
B is an alias which expands to either B16 or BEQ according to the rules:
b 256 --> b16 256 # R_MICROMIPS_PC10_S1
b 12256 --> beq $zero, $zero, 12256 # R_MICROMIPS_PC16_S1
b label --> beq $zero, $zero, label # R_MICROMIPS_PC16_S1

Differential Revision: http://reviews.llvm.org/D3514


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226657 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we always stored 4 bytes of origin at the destination address
even for 8-byte (and longer) stores.

This should fix rare missing, or incorrect, origin stacks in MSan reports.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226658 91177308-0d34-0410-b5e6-96231b3b80d8
When opt is compiled with AddressSanitizer it takes more than 30 seconds
to unroll the loop in unroll_1M().


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226660 91177308-0d34-0410-b5e6-96231b3b80d8
AAPCS64 says that it's up to the platform to specify whether x18 is
reserved, and a first step on that way is to add a flag controlling
it.

From: Andrew Turner <[email protected]>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226664 91177308-0d34-0410-b5e6-96231b3b80d8
…, N))"

It hadn't gone through review yet, but was still on my local copy.

This reverts commit r226663

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226665 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we can fully specify extload legality, we can declare them
legal for the PMOVSX/PMOVZX instructions.  This for instance enables
a DAGCombine to fire on code such as
  (and (<zextload-equivalent> ...), <redundant mask>)
to turn it into:
  (zextload ...)
as seen in the testcase changes.

There is one regression, in widen_load-2.ll: we're no longer able
to do store-to-load forwarding with illegal extload memory types.
This will be addressed separately.

Differential Revision: http://reviews.llvm.org/D6533


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226676 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes it for SI. It also removes the pattern
used previously for Evergreen for f32. I'm not sure
if the the new R600 output is better or not, but it uses
1 fewer instructions if BFI is available.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226682 91177308-0d34-0410-b5e6-96231b3b80d8
verification. Tested via a unit test.

Follow-up to r226616.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226684 91177308-0d34-0410-b5e6-96231b3b80d8
…ef removal

This cleans up code and is more in line with the general philosophy of
modifying LiveIntervals through LiveIntervalAnalysis instead of changing
them directly.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226687 91177308-0d34-0410-b5e6-96231b3b80d8
…removal

This cleans up code and is more in line with the general philosophy of
modifying LiveIntervals through LiveIntervalAnalysis instead of changing
them directly.

This also fixes a case where SplitEditor::removeBackCopies() would miss
the subregister ranges.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226690 91177308-0d34-0410-b5e6-96231b3b80d8
preames and others added 25 commits January 26, 2015 18:26
This change reverts the interesting parts of 226311 (and 227046).  This change introduced two problems, and I've been convinced that an alternate approach is preferrable anyways.

The bugs were:
- Registery appears to require all users be within the same linkage unit.  After this change, asking for "statepoint-example" in Transform/ would sometimes get you nullptr, whereas asking the same question in CodeGen would return the right GCStrategy.  The correct long term fix is to get rid of the utter hack which is Registry, but I don't have time for that right now.  227046 appears to have been an attempt to fix this, but I don't believe it does so completely.
- GCMetadataPrinter::finishAssembly was being called more than once per GCStrategy.  Each Strategy was being added to the GCModuleInfo multiple times.

Once I get time again, I'm going to split GCModuleInfo into the gc.root specific part and a GCStrategy owning Analysis pass.  I'm probably also going to kill off the Registry.  Once that's done, I'll move the new GCStrategyAnalysis and all built in GCStrategies into Analysis.  (As original suggested by Chandler.)  This will accomplish my original goal of being able to access GCStrategy from Transform/  without adding all of the builtin GCs to IR/.  



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227109 91177308-0d34-0410-b5e6-96231b3b80d8
This change is mostly motivated by exposing information about the original query instruction to the actual scanning work in getPointerDependencyFrom when used by GVN PRE. In a follow up change, I will use this to be more precise with regards to the semantics of volatile instructions encountered in the scan of a basic block.

Worth noting, is that this change (despite appearing quite simple) is not semantically preserving. By providing more information to the helper routine, we allow some optimizations to kick in that weren't previously able to (when called from this code path.) In particular, we see that treatment of !invariant.load becomes more precise. In theory, we might see a difference with an ordered/atomic instruction as well, but I'm having a hard time actually finding a test case which shows that.

Test wise, I've included new tests for !invariant.load which illustrate this difference. I've also included some updated TBAA tests which highlight that this change isn't needed for that optimization to kick in - it's handled inside alias analysis itself. 

Eventually, it would be nice to factor the !invariant.load handling inside alias analysis as well.

Differential Revision: http://reviews.llvm.org/D6895



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227110 91177308-0d34-0410-b5e6-96231b3b80d8
…e destination (PR14221)

This patch fixes the following miscompile:

define void @sqrtsd(<2 x double> %a) nounwind uwtable ssp {
  %0 = tail call <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double> %a) nounwind 
  %a0 = extractelement <2 x double> %0, i32 0
  %conv = fptrunc double %a0 to float
  %a1 = extractelement <2 x double> %0, i32 1
  %conv3 = fptrunc double %a1 to float
  tail call void @callee2(float %conv, float %conv3) nounwind
  ret void
}

Current codegen:

sqrtsd	%xmm0, %xmm1        ## high element of %xmm1 is undef here
xorps	%xmm0, %xmm0
cvtsd2ss	%xmm1, %xmm0
shufpd	$1, %xmm1, %xmm1
cvtsd2ss	%xmm1, %xmm1 ## operating on undef value
jmp	_callee

This is a continuation of http://llvm.org/viewvc/llvm-project?view=revision&revision=224624 ( http://reviews.llvm.org/D6330 ) 
which was itself a continuation of r167064 ( http://llvm.org/viewvc/llvm-project?view=revision&revision=167064 ).

All of these patches are partial fixes for PR14221 ( http://llvm.org/bugs/show_bug.cgi?id=14221 ); 
this should be the final patch needed to resolve that bug.

Differential Revision: http://reviews.llvm.org/D6885



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227111 91177308-0d34-0410-b5e6-96231b3b80d8
According to my reading of the LangRef, volatiles are only ordered with respect to other volatiles. It is entirely legal and profitable to forward unrelated loads over the volatile load. This patch implements this for GVN by refining the transition rules MemoryDependenceAnalysis uses when encountering a volatile.

The added test cases show where the extra flexibility is profitable for local dependence optimizations. I have a related change (227110) which will extend this to non-local dependence (i.e. PRE), but that's essentially orthogonal to the semantic change in this patch. I have tested the two together and can confirm that PRE works over a volatile load with both changes.  I will be submitting a PRE w/volatiles test case seperately in the near future.

Differential Revision: http://reviews.llvm.org/D6901



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227112 91177308-0d34-0410-b5e6-96231b3b80d8
derived classes.

Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.

*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227113 91177308-0d34-0410-b5e6-96231b3b80d8
…itly ordered or unordered

Fixes PR22322

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227117 91177308-0d34-0410-b5e6-96231b3b80d8
Essentially DataLayout is global and affects the layout of ABI
level objects. Preferred alignment could change on a per function
basis as we change CPU features.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227118 91177308-0d34-0410-b5e6-96231b3b80d8
This can also be used instead of the WindowsSupport.h ConvertUTF8ToUTF16
helpers, but that will require massaging some character types. The
Windows support routines want wchar_t output, but wchar_t is often 32
bits on non-Windows OSs.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227122 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of creating a pattern like "(p && a) || ((!p) && b)",
just expand the i8 operands to i32 and perform the selp on them.

Fixes PR22246

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227123 91177308-0d34-0410-b5e6-96231b3b80d8
Tested by Transforms/SimplifyCFG/switch-to-br.ll's @unreachable function.

Differential Revision: http://reviews.llvm.org/D6471

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227124 91177308-0d34-0410-b5e6-96231b3b80d8
An unreachable default destination can be exploited by other optimizations and
allows for more efficient lowering. Both the SDag switch lowering and
LowerSwitch can exploit unreachable defaults.

Also make TurnSwitchRangeICmp handle switches with unreachable default.
This is kind of separate change, but it cannot be tested without the change
above, and I don't want to land the change above without this since that would
regress other tests.

Differential Revision: http://reviews.llvm.org/D6471

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227125 91177308-0d34-0410-b5e6-96231b3b80d8
…is unreachable

The range check would get optimized away later, but we might as well not emit
them in the first place.

http://reviews.llvm.org/D6471

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227126 91177308-0d34-0410-b5e6-96231b3b80d8
- Rename mmx-builtins to mmx-intrinsics to match other intrinsic test naming.
- Remove tests that duplicate functionality from mmx-intrinsics.ll.
- Move arith related tests to mmx-arith.ll.
- MMX related shuffle goes to vector-shuffle-mmx.ll.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227130 91177308-0d34-0410-b5e6-96231b3b80d8
commit r227113 moved DataLayout

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227133 91177308-0d34-0410-b5e6-96231b3b80d8
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227136 91177308-0d34-0410-b5e6-96231b3b80d8
Fix broken check lines, use multiple check prefixes,
add an additional test for i1 or.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227137 91177308-0d34-0410-b5e6-96231b3b80d8
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227138 91177308-0d34-0410-b5e6-96231b3b80d8
Need a new API for clang-modernize that allows specifying a list of option categories to remain visible. This will allow clang-modernize to move off getRegisteredOptions.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227140 91177308-0d34-0410-b5e6-96231b3b80d8
PassRegistry::getPass() is quite heavy since it involves taking a lock and
looking up the info in a hashtable.
This pass is not Rust-specific, in that all of its transformations are
intended to be correct for arbitrary LLVM IR, but it targets idioms
found in IR generated by `rustc`, e.g. heavy use of `inbounds` GEPs.
Since the NullCheckElimination pass has a similar intent to the
CorrelatedValuePropagation pass, I decided to run it right after the
both places that the latter runs.
Teach the NullCheckElimination pass about recurrences involving inbounds
GEPs. This allows the pass to optimize null checks from most uses of
single slice and vector iterators.

This still isn't sufficient to eliminate null checks from uses of
multiple iterators with zip().
@rust-highfive
Copy link

Thanks for the pull request, and welcome! The Rust team is excited to review your changes, and you should hear from @pcwalton (or someone else) soon.

If any changes to this PR are deemed necessary, please add them as extra commits. This ensures that the reviewer can see what has changed since they last reviewed the code. The way Github handles out-of-date commits, this should also make it reasonably obvious what issues have or haven't been addressed. Large or tricky changes may require several passes of review and changes.

Please see CONTRIBUTING.md for more information.

@alexcrichton
Copy link
Member

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.