Skip to content

Add support for OpenAi responses API #4564

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 1 commit into
base: antonpirker/openai-overhaul
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions sentry_sdk/consts.py
Original file line number Diff line number Diff line change
Expand Up @@ -652,6 +652,7 @@ class OP:
GEN_AI_EXECUTE_TOOL = "gen_ai.execute_tool"
GEN_AI_HANDOFF = "gen_ai.handoff"
GEN_AI_INVOKE_AGENT = "gen_ai.invoke_agent"
GEN_AI_RESPONSES = "gen_ai.responses"
GRAPHQL_EXECUTE = "graphql.execute"
GRAPHQL_MUTATION = "graphql.mutation"
GRAPHQL_PARSE = "graphql.parse"
Expand Down
118 changes: 100 additions & 18 deletions sentry_sdk/integrations/openai.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from functools import wraps
import json

import sentry_sdk
from sentry_sdk import consts
Expand All @@ -21,6 +22,7 @@
try:
from openai.resources.chat.completions import Completions, AsyncCompletions
from openai.resources import Embeddings, AsyncEmbeddings
from openai.resources.responses import Responses

if TYPE_CHECKING:
from openai.types.chat import ChatCompletionMessageParam, ChatCompletionChunk
Expand All @@ -47,6 +49,7 @@ def setup_once():
# type: () -> None
Completions.create = _wrap_chat_completion_create(Completions.create)
Embeddings.create = _wrap_embeddings_create(Embeddings.create)
Responses.create = _wrap_responses_create(Responses.create)

AsyncCompletions.create = _wrap_async_chat_completion_create(
AsyncCompletions.create
Expand Down Expand Up @@ -74,44 +77,46 @@ def _calculate_chat_completion_usage(
messages, response, span, streaming_message_responses, count_tokens
):
# type: (Iterable[ChatCompletionMessageParam], Any, Span, Optional[List[str]], Callable[..., Any]) -> None
completion_tokens = 0 # type: Optional[int]
prompt_tokens = 0 # type: Optional[int]
input_tokens = 0 # type: Optional[int]
output_tokens = 0 # type: Optional[int]
total_tokens = 0 # type: Optional[int]
if hasattr(response, "usage"):
if hasattr(response.usage, "completion_tokens") and isinstance(
response.usage.completion_tokens, int
if hasattr(response.usage, "input_tokens") and isinstance(
response.usage.input_tokens, int
):
completion_tokens = response.usage.completion_tokens
if hasattr(response.usage, "prompt_tokens") and isinstance(
response.usage.prompt_tokens, int
input_tokens = response.usage.input_tokens

if hasattr(response.usage, "output_tokens") and isinstance(
response.usage.output_tokens, int
):
prompt_tokens = response.usage.prompt_tokens
output_tokens = response.usage.output_tokens

if hasattr(response.usage, "total_tokens") and isinstance(
response.usage.total_tokens, int
):
total_tokens = response.usage.total_tokens

if prompt_tokens == 0:
if input_tokens == 0:
for message in messages:
if "content" in message:
prompt_tokens += count_tokens(message["content"])
input_tokens += count_tokens(message["content"])

if completion_tokens == 0:
if output_tokens == 0:
if streaming_message_responses is not None:
for message in streaming_message_responses:
completion_tokens += count_tokens(message)
output_tokens += count_tokens(message)
elif hasattr(response, "choices"):
for choice in response.choices:
if hasattr(choice, "message"):
completion_tokens += count_tokens(choice.message)
output_tokens += count_tokens(choice.message)

if prompt_tokens == 0:
prompt_tokens = None
if completion_tokens == 0:
completion_tokens = None
if input_tokens == 0:
input_tokens = None
if output_tokens == 0:
output_tokens = None
if total_tokens == 0:
total_tokens = None
record_token_usage(span, prompt_tokens, completion_tokens, total_tokens)
record_token_usage(span, input_tokens, output_tokens, total_tokens)


def _new_chat_completion_common(f, *args, **kwargs):
Expand Down Expand Up @@ -427,3 +432,80 @@ async def _sentry_patched_create_async(*args, **kwargs):
return await _execute_async(f, *args, **kwargs)

return _sentry_patched_create_async


def _new_responses_create_common(f, *args, **kwargs):
# type: (Any, *Any, **Any) -> Any
integration = sentry_sdk.get_client().get_integration(OpenAIIntegration)
if integration is None:
return f(*args, **kwargs)

model = kwargs.get("model")
input = kwargs.get("input")

span = sentry_sdk.start_span(
op=consts.OP.GEN_AI_RESPONSES,
name=f"{consts.OP.GEN_AI_RESPONSES} {model}",
origin=OpenAIIntegration.origin,
)
span.__enter__()

set_data_normalized(span, SPANDATA.GEN_AI_REQUEST_MODEL, model)

if should_send_default_pii() and integration.include_prompts:
set_data_normalized(span, SPANDATA.GEN_AI_REQUEST_MESSAGES, input)

res = yield f, args, kwargs

if hasattr(res, "output"):
if should_send_default_pii() and integration.include_prompts:
set_data_normalized(
span,
SPANDATA.GEN_AI_RESPONSE_TEXT,
json.dumps([item.to_dict() for item in res.output]),
)
import ipdb

ipdb.set_trace()
_calculate_chat_completion_usage([], res, span, None, integration.count_tokens)
span.__exit__(None, None, None)

else:
set_data_normalized(span, "unknown_response", True)
span.__exit__(None, None, None)

return res


def _wrap_responses_create(f):
# type: (Any) -> Any
def _execute_sync(f, *args, **kwargs):
# type: (Any, *Any, **Any) -> Any
gen = _new_responses_create_common(f, *args, **kwargs)

try:
f, args, kwargs = next(gen)
except StopIteration as e:
return e.value

try:
try:
result = f(*args, **kwargs)
except Exception as e:
_capture_exception(e)
raise e from None

return gen.send(result)
except StopIteration as e:
return e.value

@wraps(f)
def _sentry_patched_create_sync(*args, **kwargs):
# type: (*Any, **Any) -> Any
integration = sentry_sdk.get_client().get_integration(OpenAIIntegration)
if integration is None:
return f(*args, **kwargs)

return _execute_sync(f, *args, **kwargs)

return _sentry_patched_create_sync
Loading