Skip to content

Inpainting height and width #3103

Closed
Closed
@Amazingldl

Description

@Amazingldl
import PIL
import requests
import torch
from io import BytesIO

from diffusers import StableDiffusionInpaintPipeline


def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")


img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

init_image = download_image(img_url)
mask_image = download_image(mask_url)

pipe = StableDiffusionInpaintPipeline.from_pretrained(
    "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")

prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image, height=1024, width=1024).images[0]

I got this error:

│ D:\App\miniconda\envs\aigc\lib\site-packages\diffusers\pipelines\stable_diffusion\pipeline_stabl │
│ e_diffusion_inpaint.py:871 in __call__                                                           │
│                                                                                                  │
│   868 │   │   │   │                                                                              │
│   869 │   │   │   │   # concat latents, mask, masked_image_latents in the channel dimension      │
│   870 │   │   │   │   latent_model_input = self.scheduler.scale_model_input(latent_model_input   │
│ ❱ 871 │   │   │   │   latent_model_input = torch.cat([latent_model_input, mask, masked_image_l   │
│   872 │   │   │   │                                                                              │
│   873 │   │   │   │   # predict the noise residual                                               │
│   874 │   │   │   │   noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prom   │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 128 but got size 64 for tensor number 2
in the list.

If I set the height=520, width=520, I got this error:

RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 65 but got size 64 for tensor number 2 in
the list.

Can I customize the height and width of the output image? If so, what are the requirements for height and width?
Thanks for your helps!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions