Skip to content

check if operand is div in fold FDivSqrtDivisor #81970

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Mar 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 31 additions & 0 deletions llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1706,6 +1706,34 @@ static Instruction *foldFDivPowDivisor(BinaryOperator &I,
return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
}

/// Convert div to mul if we have an sqrt divisor iff sqrt's operand is a fdiv
/// instruction.
static Instruction *foldFDivSqrtDivisor(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
// X / sqrt(Y / Z) --> X * sqrt(Z / Y)
if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
return nullptr;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
auto *II = dyn_cast<IntrinsicInst>(Op1);
if (!II || II->getIntrinsicID() != Intrinsic::sqrt || !II->hasOneUse() ||
!II->hasAllowReassoc() || !II->hasAllowReciprocal())
return nullptr;

Value *Y, *Z;
auto *DivOp = dyn_cast<Instruction>(II->getOperand(0));
if (!DivOp)
return nullptr;
if (!match(DivOp, m_FDiv(m_Value(Y), m_Value(Z))))
return nullptr;
if (!DivOp->hasAllowReassoc() || !I.hasAllowReciprocal() ||
!DivOp->hasOneUse())
return nullptr;
Value *SwapDiv = Builder.CreateFDivFMF(Z, Y, DivOp);
Value *NewSqrt =
Builder.CreateUnaryIntrinsic(II->getIntrinsicID(), SwapDiv, II);
return BinaryOperator::CreateFMulFMF(Op0, NewSqrt, &I);
}

Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
Module *M = I.getModule();

Expand Down Expand Up @@ -1813,6 +1841,9 @@ Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
return Mul;

if (Instruction *Mul = foldFDivSqrtDivisor(I, Builder))
return Mul;

// pow(X, Y) / X --> pow(X, Y-1)
if (I.hasAllowReassoc() &&
match(Op0, m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Specific(Op1),
Expand Down
34 changes: 25 additions & 9 deletions llvm/test/Transforms/InstCombine/fdiv-sqrt.ll
Original file line number Diff line number Diff line change
Expand Up @@ -6,9 +6,9 @@ declare double @llvm.sqrt.f64(double)
define double @sqrt_div_fast(double %x, double %y, double %z) {
; CHECK-LABEL: @sqrt_div_fast(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[DIV:%.*]] = fdiv fast double [[Y:%.*]], [[Z:%.*]]
; CHECK-NEXT: [[SQRT:%.*]] = call fast double @llvm.sqrt.f64(double [[DIV]])
; CHECK-NEXT: [[DIV1:%.*]] = fdiv fast double [[X:%.*]], [[SQRT]]
; CHECK-NEXT: [[TMP0:%.*]] = fdiv fast double [[Z:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = call fast double @llvm.sqrt.f64(double [[TMP0]])
; CHECK-NEXT: [[DIV1:%.*]] = fmul fast double [[TMP1]], [[X:%.*]]
; CHECK-NEXT: ret double [[DIV1]]
;
entry:
Expand Down Expand Up @@ -36,9 +36,9 @@ entry:
define double @sqrt_div_reassoc_arcp(double %x, double %y, double %z) {
; CHECK-LABEL: @sqrt_div_reassoc_arcp(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[DIV:%.*]] = fdiv reassoc arcp double [[Y:%.*]], [[Z:%.*]]
; CHECK-NEXT: [[SQRT:%.*]] = call reassoc arcp double @llvm.sqrt.f64(double [[DIV]])
; CHECK-NEXT: [[DIV1:%.*]] = fdiv reassoc arcp double [[X:%.*]], [[SQRT]]
; CHECK-NEXT: [[TMP0:%.*]] = fdiv reassoc arcp double [[Z:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = call reassoc arcp double @llvm.sqrt.f64(double [[TMP0]])
; CHECK-NEXT: [[DIV1:%.*]] = fmul reassoc arcp double [[TMP1]], [[X:%.*]]
; CHECK-NEXT: ret double [[DIV1]]
;
entry:
Expand Down Expand Up @@ -96,9 +96,9 @@ entry:
define double @sqrt_div_arcp_missing(double %x, double %y, double %z) {
; CHECK-LABEL: @sqrt_div_arcp_missing(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[DIV:%.*]] = fdiv reassoc double [[Y:%.*]], [[Z:%.*]]
; CHECK-NEXT: [[SQRT:%.*]] = call reassoc arcp double @llvm.sqrt.f64(double [[DIV]])
; CHECK-NEXT: [[DIV1:%.*]] = fdiv reassoc arcp double [[X:%.*]], [[SQRT]]
; CHECK-NEXT: [[TMP0:%.*]] = fdiv reassoc double [[Z:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = call reassoc arcp double @llvm.sqrt.f64(double [[TMP0]])
; CHECK-NEXT: [[DIV1:%.*]] = fmul reassoc arcp double [[TMP1]], [[X:%.*]]
; CHECK-NEXT: ret double [[DIV1]]
;
entry:
Expand Down Expand Up @@ -173,3 +173,19 @@ entry:
ret double %div1
}

define float @sqrt_non_div_operator(float %a) {
; CHECK-LABEL: @sqrt_non_div_operator(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[CONV:%.*]] = fpext float [[A:%.*]] to double
; CHECK-NEXT: [[SQRT:%.*]] = call fast double @llvm.sqrt.f64(double [[CONV]])
; CHECK-NEXT: [[DIV:%.*]] = fdiv fast double [[CONV]], [[SQRT]]
; CHECK-NEXT: [[CONV2:%.*]] = fptrunc double [[DIV]] to float
; CHECK-NEXT: ret float [[CONV2]]
;
entry:
%conv = fpext float %a to double
%sqrt = call fast double @llvm.sqrt.f64(double %conv)
%div = fdiv fast double %conv, %sqrt
%conv2 = fptrunc double %div to float
ret float %conv2
}