Skip to content

to_datetime() with errors=coerce and without return different values #25143

@grleblanc

Description

@grleblanc

Code Sample, a copy-pastable example if possible

Without errors='coerce'

>>> d = { 'ts': ['2019-02-02 08:07:13+00', '2019-02-02 08:03:22.54+00'] }
>>> df = pd.DataFrame(data=d)
>>> d
{'ts': ['2019-02-02 08:07:13+00', '2019-02-02 08:03:22.54+00']}
>>> df
                          ts
0     2019-02-02 08:07:13+00
1  2019-02-02 08:03:22.54+00
>>> df.dtypes
ts    object
dtype: object

>>> df['ts'] = pd.to_datetime(df['ts'], infer_datetime_format=True)
>>> df
                                ts
0        2019-02-02 08:07:13+00:00
1 2019-02-02 08:03:22.540000+00:00
>>> df.dtypes
ts    datetime64[ns, UTC]
dtype: object

With errors='coerce'

>>> d = { 'ts': ['2019-02-02 08:07:13+00', '2019-02-02 08:03:22.54+00'] }
>>> df = pd.DataFrame(data=d)
>>> d
{'ts': ['2019-02-02 08:07:13+00', '2019-02-02 08:03:22.54+00']}
>>> df
                          ts
0     2019-02-02 08:07:13+00
1  2019-02-02 08:03:22.54+00
>>> df.dtypes
ts    object
dtype: object
>>> df['ts'] = pd.to_datetime(df['ts'], infer_datetime_format=True, errors='coerce')
>>> df
                   ts
0 2019-02-02 08:07:13
1                 NaT

Problem description

The functionality of to_datetime() with errors='coerce' is different than without. If I understand some of the other issues raised on this topic correctly, the functionality is different in some cases by design. In this case, the dates are very similiar, although different format.

Expected Output

>>> d = { 'ts': ['2019-02-02 08:07:13+00', '2019-02-02 08:03:22.54+00'] }
>>> df = pd.DataFrame(data=d)
>>> d
{'ts': ['2019-02-02 08:07:13+00', '2019-02-02 08:03:22.54+00']}
>>> df
                          ts
0     2019-02-02 08:07:13+00
1  2019-02-02 08:03:22.54+00
>>> df.dtypes
ts    object
dtype: object

>>> df['ts'] = pd.to_datetime(df['ts'], infer_datetime_format=True, errors='coerce')
>>> df
                                ts
0        2019-02-02 08:07:13+00:00
1 2019-02-02 08:03:22.540000+00:00
>>> df.dtypes
ts    datetime64[ns, UTC]
dtype: object

Output of pd.show_versions()

[paste the output of pd.show_versions() here below this line]

INSTALLED VERSIONS

commit: None
python: 3.6.5.final.0
python-bits: 64
OS: Darwin
OS-release: 16.7.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8

pandas: 0.24.1
pytest: None
pip: 10.0.1
setuptools: 39.0.1
Cython: None
numpy: 1.14.2
scipy: None
pyarrow: None
xarray: None
IPython: None
sphinx: None
patsy: None
dateutil: 2.7.5
pytz: 2018.4
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: None
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml.etree: 3.8.0
bs4: None
html5lib: 1.0.1
sqlalchemy: 1.2.7
pymysql: None
psycopg2: 2.7.5 (dt dec pq3 ext lo64)
jinja2: 2.8.1
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
gcsfs: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions