Description
Code Sample
import pandas as pd
sample_data = []
sample_data.append({"integer_column":None})
sample_data.append({"integer_column":1})
sample_data.append({"integer_column":2})
df = pd.DataFrame(sample_data)
# Previous type is object
# df.dtypes
df.loc[:,'integer_column'] = df.loc[:,'integer_column'].astype('Int64')
# Check new type is Int64, nullable
# df.dtypes
df.fillna('null_string')
Problem description
Using the new nullable type Int64, it is not possible to fill "NaN" values with other value.
Error raised
TypeError: <U11 cannot be converted to an IntegerDtype
Expected Output
The new dataframe should have replaced it's NaN values with the desired input of .fillna() method.
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.6.4.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 85 Stepping 4, GenuineIntel
byteorder: little
LC_ALL: None
LANG: en
LOCALE: None.None
pandas: 0.24.1
pytest: 3.3.2
pip: 9.0.1
setuptools: 38.4.0
Cython: 0.27.3
numpy: 1.14.0
scipy: 1.0.0
pyarrow: None
xarray: None
IPython: 6.2.1
sphinx: 1.6.6
patsy: 0.5.0
dateutil: 2.6.1
pytz: 2017.3
blosc: None
bottleneck: 1.2.1
tables: 3.4.2
numexpr: 2.6.4
feather: None
matplotlib: 2.1.2
openpyxl: 2.5.12
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 1.0.2
lxml.etree: 4.1.1
bs4: 4.6.0
html5lib: 1.0.1
sqlalchemy: 1.1.18
pymysql: None
psycopg2: None
jinja2: 2.8.1
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
gcsfs: None