-
-
Notifications
You must be signed in to change notification settings - Fork 18.7k
Closed
Labels
DatetimeDatetime data dtypeDatetime data dtypePerformanceMemory or execution speed performanceMemory or execution speed performanceRegressionFunctionality that used to work in a prior pandas versionFunctionality that used to work in a prior pandas version
Milestone
Description
import pandas as pd
import numpy as np
N = 10 ** 5
idx = pd.date_range(start="1/1/2000", periods=N, freq="s")
s = pd.Series(np.random.randn(N), index=idx)
%timeit s.sort_index()
# 1.0.2
108 µs ± 8.27 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
# master
225 µs ± 8.36 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
According to https://pandas.pydata.org/speed/pandas/index.html#timeseries.SortIndex.time_sort_index?p-monotonic=True&commits=f683473a156f032a64a1d7edcebde21c42a8702d-085860a49f3a87aa4e24b3115b50b85c4b3c5676, the first slow commit is #33755, which just bumps Cython in numpydev... So probably not actually that commit.
Metadata
Metadata
Assignees
Labels
DatetimeDatetime data dtypeDatetime data dtypePerformanceMemory or execution speed performanceMemory or execution speed performanceRegressionFunctionality that used to work in a prior pandas versionFunctionality that used to work in a prior pandas version