Description
Code Sample
import pandas as pd
import numpy as np
c1 = ['A', 'C', 'C', 'D' ]
c2 = ['P2', 'P2', 'P1', 'P2']
df1 = pd.DataFrame({
'id': c1[1:],
'p': c2[1:],
'a': np.arange(len(c1[1:])),
})
df2 = pd.DataFrame({
'id': c1[:-1],
'p': c2[:-1],
'd1': np.arange(10, 10+len(c1[:-1])),
})
# ordered=True doesn't change the result
pcat = pd.api.types.CategoricalDtype(categories=['P2', 'P1'], ordered=False)
df1['p'] = df1['p'].astype(pcat)
df2['p'] = df2['p'].astype(pcat)
df1 = df1.set_index(['id', 'p'])
df2 = df2.set_index(['id', 'p'])
result = pd.merge(df1, df2, how='left', left_index=True, right_index=True)
print(df1)
print(df2)
# ('C', 'P1') is in both dataframes and should therefore be merged accordingly
print(result)
output:
a
id p
C P2 0
P1 1
D P2 2
d1
id p
A P2 10
C P2 11
P1 12
a d1
id p
C P2 0 11.0
P1 1 NaN ## <- Should be 12.0
D P2 2 NaN
Problem description
The merge should not return NaN for the ('C', 'P1') value available in df2 for the left merge.
This happens only:
- when
p
is Categorical: leaving the column as object/string gives the right result - when category values are ordered as such (decreasing lexicographic order), but the
ordered
argument does not change the result - when the
id
values are as such: changing the 'C' in 'E' or anything "above" gives the right result (!)
Expected Output
a d1
id p
C P2 0 11.0
P1 1 12.0
D P2 2 NaN
First level of investigations
Using a debugger and following the code execution:
- when the error occurs: in Index.join(), it goes here to: https://github.com/pandas-dev/pandas/blob/master/pandas/core/indexes/base.py#L3537
elif not self.is_unique or not other.is_unique:
if self.is_monotonic and other.is_monotonic:
return self._join_monotonic( ### <- HERE
other, how=how, return_indexers=return_indexers
)
It seems it uses the wrong branch/case.
- when the error does not occurs (e.g. swapping the values in the CategoricalDType declaration): https://github.com/pandas-dev/pandas/blob/master/pandas/core/indexes/base.py#L3578
if return_indexers:
if join_index is self:
lindexer = None
else:
lindexer = self.get_indexer(join_index)
if join_index is other:
rindexer = None
else:
rindexer = other.get_indexer(join_index) ### <- HERE
return join_index, lindexer, rindexer
else:
return join_index
This is how far I can get.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : 2a7d332
python : 3.8.3.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.18362
machine : AMD64
processor : Intel64 Family 6 Model 142 Stepping 10, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : fr_FR.cp1252
pandas : 1.1.2
numpy : 1.19.2
pytz : 2020.1
dateutil : 2.8.1
pip : 20.2.3
setuptools : 41.2.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.18.1
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : 2.7.1
odfpy : None
openpyxl : 3.0.5
pandas_gbq : None
pyarrow : 1.0.1
pytables : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : 3.6.1
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None