Skip to content

BUG: pandas.DataFrame.apply gives different results between pandas versions 1.1.4 and 1.2.0 #39327

Closed
@brandonlind

Description

@brandonlind
  • [ x] I have checked that this issue has not already been reported.

  • [ x] I have confirmed this bug exists on the latest version of pandas.

  • (optional) I have confirmed this bug exists on the master branch of pandas.


Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.

Code Sample, a copy-pastable example

# Your code here
df2 =pd.DataFrame(dict(one=[str((i/10)*100)+"%" for i in range(5)],
                       two=[str((i/20)*100)+"%" for i in range(10,15)],
                       three=[str((i/30)*100)+"%" for i in range(20,25)]))

# the following two lines give the same result as the other in 1.1.4 but different results in 1.2.0
df2.apply(lambda series: series.str.replace("%","").astype(float)/100, axis=1)  
df2.apply(lambda series: series.str.replace("%","").astype(float)/100, axis=0)

Problem description

[this should explain why the current behaviour is a problem and why the expected output is a better solution]

The two versions of pandas (1.1.4 and 1.2.0) give different results when axis=1

Expected Output

They should be the same when axis=1

Output of pd.show_versions()

even though my "pandas 1.2.0 environment" is python 3.8.5 while my "pandas 1.1.4 environment" is python 3.7.9, the problem is resolved if I revert the python 3.8.5 environment to pandas 1.1.4.

pandas 1.1.4 environment

INSTALLED VERSIONS
------------------
commit           : 67a3d4241ab84419856b84fc3ebc9abcbe66c6b3
python           : 3.7.9.final.0
python-bits      : 64
OS               : Linux
OS-release       : 3.10.0-1160.11.1.el7.x86_64
Version          : #1 SMP Mon Nov 30 13:05:31 EST 2020
machine          : x86_64
processor        : x86_64
byteorder        : little
LC_ALL           : None
LANG             : en_US.UTF-8
LOCALE           : en_US.UTF-8

pandas           : 1.1.4
numpy            : 1.19.4
pytz             : 2020.4
dateutil         : 2.8.1
pip              : 20.3.3
setuptools       : 51.0.0.post20201207
Cython           : None
pytest           : 6.2.1
hypothesis       : None
sphinx           : None
blosc            : None
feather          : None
xlsxwriter       : None
lxml.etree       : 4.6.2
html5lib         : None
pymysql          : None
psycopg2         : None
jinja2           : 2.11.2
IPython          : 7.19.0
pandas_datareader: None
bs4              : None
bottleneck       : None
fsspec           : None
fastparquet      : None
gcsfs            : None
matplotlib       : 3.3.2
numexpr          : None
odfpy            : None
openpyxl         : None
pandas_gbq       : None
pyarrow          : None
pytables         : None
pyxlsb           : None
s3fs             : None
scipy            : 1.5.4
sqlalchemy       : None
tables           : None
tabulate         : None
xarray           : None
xlrd             : None
xlwt             : None
numba            : None

pandas 1.2.0 environment

INSTALLED VERSIONS
------------------
commit           : 3e89b4c4b1580aa890023fc550774e63d499da25
python           : 3.8.5.final.0
python-bits      : 64
OS               : Linux
OS-release       : 3.10.0-1160.11.1.el7.x86_64
Version          : #1 SMP Mon Nov 30 13:05:31 EST 2020
machine          : x86_64
processor        : x86_64
byteorder        : little
LC_ALL           : None
LANG             : en_US.UTF-8
LOCALE           : en_US.UTF-8

pandas           : 1.2.0
numpy            : 1.19.4
pytz             : 2020.5
dateutil         : 2.8.1
pip              : 20.3.3
setuptools       : 51.0.0.post20201207
Cython           : None
pytest           : 6.2.1
hypothesis       : None
sphinx           : None
blosc            : None
feather          : None
xlsxwriter       : None
lxml.etree       : 4.6.2
html5lib         : None
pymysql          : None
psycopg2         : None
jinja2           : 2.11.2
IPython          : 7.19.0
pandas_datareader: None
bs4              : None
bottleneck       : None
fsspec           : None
fastparquet      : None
gcsfs            : None
matplotlib       : 3.3.2
numexpr          : None
odfpy            : None
openpyxl         : None
pandas_gbq       : None
pyarrow          : None
pyxlsb           : None
s3fs             : None
scipy            : 1.5.4
sqlalchemy       : None
tables           : None
tabulate         : None
xarray           : None
xlrd             : None
xlwt             : None
numba            : None

[paste the output of pd.show_versions() here leaving a blank line after the details tag]

Metadata

Metadata

Assignees

No one assigned

    Labels

    ApplyApply, Aggregate, Transform, MapBugDuplicate ReportDuplicate issue or pull requestNeeds TestsUnit test(s) needed to prevent regressions

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions