Skip to content

TST: method-specific file for select_dtypes #32250

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 26, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
329 changes: 329 additions & 0 deletions pandas/tests/frame/methods/test_select_dtypes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,329 @@
from collections import OrderedDict

import numpy as np
import pytest

import pandas as pd
from pandas import DataFrame, Timestamp
import pandas._testing as tm


class TestSelectDtypes:
def test_select_dtypes_include_using_list_like(self):
df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
"f": pd.Categorical(list("abc")),
"g": pd.date_range("20130101", periods=3),
"h": pd.date_range("20130101", periods=3, tz="US/Eastern"),
"i": pd.date_range("20130101", periods=3, tz="CET"),
"j": pd.period_range("2013-01", periods=3, freq="M"),
"k": pd.timedelta_range("1 day", periods=3),
}
)

ri = df.select_dtypes(include=[np.number])
ei = df[["b", "c", "d", "k"]]
tm.assert_frame_equal(ri, ei)

ri = df.select_dtypes(include=[np.number], exclude=["timedelta"])
ei = df[["b", "c", "d"]]
tm.assert_frame_equal(ri, ei)

ri = df.select_dtypes(include=[np.number, "category"], exclude=["timedelta"])
ei = df[["b", "c", "d", "f"]]
tm.assert_frame_equal(ri, ei)

ri = df.select_dtypes(include=["datetime"])
ei = df[["g"]]
tm.assert_frame_equal(ri, ei)

ri = df.select_dtypes(include=["datetime64"])
ei = df[["g"]]
tm.assert_frame_equal(ri, ei)

ri = df.select_dtypes(include=["datetimetz"])
ei = df[["h", "i"]]
tm.assert_frame_equal(ri, ei)

with pytest.raises(NotImplementedError, match=r"^$"):
df.select_dtypes(include=["period"])

def test_select_dtypes_exclude_using_list_like(self):
df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
}
)
re = df.select_dtypes(exclude=[np.number])
ee = df[["a", "e"]]
tm.assert_frame_equal(re, ee)

def test_select_dtypes_exclude_include_using_list_like(self):
df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
"f": pd.date_range("now", periods=3).values,
}
)
exclude = (np.datetime64,)
include = np.bool_, "integer"
r = df.select_dtypes(include=include, exclude=exclude)
e = df[["b", "c", "e"]]
tm.assert_frame_equal(r, e)

exclude = ("datetime",)
include = "bool", "int64", "int32"
r = df.select_dtypes(include=include, exclude=exclude)
e = df[["b", "e"]]
tm.assert_frame_equal(r, e)

def test_select_dtypes_include_using_scalars(self):
df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
"f": pd.Categorical(list("abc")),
"g": pd.date_range("20130101", periods=3),
"h": pd.date_range("20130101", periods=3, tz="US/Eastern"),
"i": pd.date_range("20130101", periods=3, tz="CET"),
"j": pd.period_range("2013-01", periods=3, freq="M"),
"k": pd.timedelta_range("1 day", periods=3),
}
)

ri = df.select_dtypes(include=np.number)
ei = df[["b", "c", "d", "k"]]
tm.assert_frame_equal(ri, ei)

ri = df.select_dtypes(include="datetime")
ei = df[["g"]]
tm.assert_frame_equal(ri, ei)

ri = df.select_dtypes(include="datetime64")
ei = df[["g"]]
tm.assert_frame_equal(ri, ei)

ri = df.select_dtypes(include="category")
ei = df[["f"]]
tm.assert_frame_equal(ri, ei)

with pytest.raises(NotImplementedError, match=r"^$"):
df.select_dtypes(include="period")

def test_select_dtypes_exclude_using_scalars(self):
df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
"f": pd.Categorical(list("abc")),
"g": pd.date_range("20130101", periods=3),
"h": pd.date_range("20130101", periods=3, tz="US/Eastern"),
"i": pd.date_range("20130101", periods=3, tz="CET"),
"j": pd.period_range("2013-01", periods=3, freq="M"),
"k": pd.timedelta_range("1 day", periods=3),
}
)

ri = df.select_dtypes(exclude=np.number)
ei = df[["a", "e", "f", "g", "h", "i", "j"]]
tm.assert_frame_equal(ri, ei)

ri = df.select_dtypes(exclude="category")
ei = df[["a", "b", "c", "d", "e", "g", "h", "i", "j", "k"]]
tm.assert_frame_equal(ri, ei)

with pytest.raises(NotImplementedError, match=r"^$"):
df.select_dtypes(exclude="period")

def test_select_dtypes_include_exclude_using_scalars(self):
df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
"f": pd.Categorical(list("abc")),
"g": pd.date_range("20130101", periods=3),
"h": pd.date_range("20130101", periods=3, tz="US/Eastern"),
"i": pd.date_range("20130101", periods=3, tz="CET"),
"j": pd.period_range("2013-01", periods=3, freq="M"),
"k": pd.timedelta_range("1 day", periods=3),
}
)

ri = df.select_dtypes(include=np.number, exclude="floating")
ei = df[["b", "c", "k"]]
tm.assert_frame_equal(ri, ei)

def test_select_dtypes_include_exclude_mixed_scalars_lists(self):
df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
"f": pd.Categorical(list("abc")),
"g": pd.date_range("20130101", periods=3),
"h": pd.date_range("20130101", periods=3, tz="US/Eastern"),
"i": pd.date_range("20130101", periods=3, tz="CET"),
"j": pd.period_range("2013-01", periods=3, freq="M"),
"k": pd.timedelta_range("1 day", periods=3),
}
)

ri = df.select_dtypes(include=np.number, exclude=["floating", "timedelta"])
ei = df[["b", "c"]]
tm.assert_frame_equal(ri, ei)

ri = df.select_dtypes(include=[np.number, "category"], exclude="floating")
ei = df[["b", "c", "f", "k"]]
tm.assert_frame_equal(ri, ei)

def test_select_dtypes_duplicate_columns(self):
# GH20839
odict = OrderedDict
df = DataFrame(
odict(
[
("a", list("abc")),
("b", list(range(1, 4))),
("c", np.arange(3, 6).astype("u1")),
("d", np.arange(4.0, 7.0, dtype="float64")),
("e", [True, False, True]),
("f", pd.date_range("now", periods=3).values),
]
)
)
df.columns = ["a", "a", "b", "b", "b", "c"]

expected = DataFrame(
{"a": list(range(1, 4)), "b": np.arange(3, 6).astype("u1")}
)

result = df.select_dtypes(include=[np.number], exclude=["floating"])
tm.assert_frame_equal(result, expected)

def test_select_dtypes_not_an_attr_but_still_valid_dtype(self):
df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
"f": pd.date_range("now", periods=3).values,
}
)
df["g"] = df.f.diff()
assert not hasattr(np, "u8")
r = df.select_dtypes(include=["i8", "O"], exclude=["timedelta"])
e = df[["a", "b"]]
tm.assert_frame_equal(r, e)

r = df.select_dtypes(include=["i8", "O", "timedelta64[ns]"])
e = df[["a", "b", "g"]]
tm.assert_frame_equal(r, e)

def test_select_dtypes_empty(self):
df = DataFrame({"a": list("abc"), "b": list(range(1, 4))})
msg = "at least one of include or exclude must be nonempty"
with pytest.raises(ValueError, match=msg):
df.select_dtypes()

def test_select_dtypes_bad_datetime64(self):
df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
"f": pd.date_range("now", periods=3).values,
}
)
with pytest.raises(ValueError, match=".+ is too specific"):
df.select_dtypes(include=["datetime64[D]"])

with pytest.raises(ValueError, match=".+ is too specific"):
df.select_dtypes(exclude=["datetime64[as]"])

def test_select_dtypes_datetime_with_tz(self):

df2 = DataFrame(
dict(
A=Timestamp("20130102", tz="US/Eastern"),
B=Timestamp("20130603", tz="CET"),
),
index=range(5),
)
df3 = pd.concat([df2.A.to_frame(), df2.B.to_frame()], axis=1)
result = df3.select_dtypes(include=["datetime64[ns]"])
expected = df3.reindex(columns=[])
tm.assert_frame_equal(result, expected)

@pytest.mark.parametrize(
"dtype", [str, "str", np.string_, "S1", "unicode", np.unicode_, "U1"]
)
@pytest.mark.parametrize("arg", ["include", "exclude"])
def test_select_dtypes_str_raises(self, dtype, arg):
df = DataFrame(
{
"a": list("abc"),
"g": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
"f": pd.date_range("now", periods=3).values,
}
)
msg = "string dtypes are not allowed"
kwargs = {arg: [dtype]}

with pytest.raises(TypeError, match=msg):
df.select_dtypes(**kwargs)

def test_select_dtypes_bad_arg_raises(self):
df = DataFrame(
{
"a": list("abc"),
"g": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
"f": pd.date_range("now", periods=3).values,
}
)

msg = "data type.*not understood"
with pytest.raises(TypeError, match=msg):
df.select_dtypes(["blargy, blarg, blarg"])

def test_select_dtypes_typecodes(self):
# GH 11990
df = tm.makeCustomDataframe(30, 3, data_gen_f=lambda x, y: np.random.random())
expected = df
FLOAT_TYPES = list(np.typecodes["AllFloat"])
tm.assert_frame_equal(df.select_dtypes(FLOAT_TYPES), expected)
Loading