Skip to content

DOC: styling clean-up of docstrings (part 1, frame.py) #5560

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
140 changes: 79 additions & 61 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -170,11 +170,11 @@ class DataFrame(NDFrame):

See also
--------
DataFrame.from_records: constructor from tuples, also record arrays
DataFrame.from_dict: from dicts of Series, arrays, or dicts
DataFrame.from_csv: from CSV files
DataFrame.from_items: from sequence of (key, value) pairs
read_csv / read_table / read_clipboard
DataFrame.from_records : constructor from tuples, also record arrays
DataFrame.from_dict : from dicts of Series, arrays, or dicts
DataFrame.from_csv : from CSV files
DataFrame.from_items : from sequence of (key, value) pairs
pandas.read_csv, pandas.read_table, pandas.read_clipboard
"""
_auto_consolidate = True

Expand Down Expand Up @@ -728,7 +728,7 @@ def from_records(cls, data, index=None, exclude=None, columns=None,
index : string, list of fields, array-like
Field of array to use as the index, alternately a specific set of
input labels to use
exclude: sequence, default None
exclude : sequence, default None
Columns or fields to exclude
columns : sequence, default None
Column names to use. If the passed data do not have named
Expand Down Expand Up @@ -1167,8 +1167,10 @@ def to_excel(self, excel_writer, sheet_name='Sheet1', na_rep='',
Column label for index column(s) if desired. If None is given, and
`header` and `index` are True, then the index names are used. A
sequence should be given if the DataFrame uses MultiIndex.
startow : upper left cell row to dump data frame
startcol : upper left cell column to dump data frame
startow :
upper left cell row to dump data frame
startcol :
upper left cell column to dump data frame
engine : string, default None
write engine to use - you can also set this via the options
``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and
Expand All @@ -1180,7 +1182,7 @@ def to_excel(self, excel_writer, sheet_name='Sheet1', na_rep='',
-----
If passing an existing ExcelWriter object, then the sheet will be added
to the existing workbook. This can be used to save different
DataFrames to one workbook
DataFrames to one workbook:

>>> writer = ExcelWriter('output.xlsx')
>>> df1.to_excel(writer,'Sheet1')
Expand Down Expand Up @@ -1249,13 +1251,14 @@ def to_sql(self, name, con, flavor='sqlite', if_exists='fail', **kwargs):

Parameters
----------
name: name of SQL table
conn: an open SQL database connection object
name : str
Name of SQL table
conn : an open SQL database connection object
flavor: {'sqlite', 'mysql', 'oracle'}, default 'sqlite'
if_exists: {'fail', 'replace', 'append'}, default 'fail'
fail: If table exists, do nothing.
replace: If table exists, drop it, recreate it, and insert data.
append: If table exists, insert data. Create if does not exist.
- fail: If table exists, do nothing.
- replace: If table exists, drop it, recreate it, and insert data.
- append: If table exists, insert data. Create if does not exist.
"""
from pandas.io.sql import write_frame
write_frame(
Expand Down Expand Up @@ -1316,6 +1319,7 @@ def to_html(self, buf=None, columns=None, col_space=None, colSpace=None,
CSS class(es) to apply to the resulting html table
escape : boolean, default True
Convert the characters <, >, and & to HTML-safe sequences.

"""

if force_unicode is not None: # pragma: no cover
Expand Down Expand Up @@ -1355,6 +1359,7 @@ def to_latex(self, buf=None, columns=None, col_space=None, colSpace=None,

bold_rows : boolean, default True
Make the row labels bold in the output

"""

if force_unicode is not None: # pragma: no cover
Expand Down Expand Up @@ -1923,8 +1928,9 @@ def _set_item(self, key, value):
def insert(self, loc, column, value, allow_duplicates=False):
"""
Insert column into DataFrame at specified location.
if allow_duplicates is False, Raises Exception if column is already
contained in the DataFrame

If `allow_duplicates` is False, raises Exception if column
is already contained in the DataFrame.

Parameters
----------
Expand Down Expand Up @@ -2010,7 +2016,7 @@ def xs(self, key, axis=0, level=None, copy=True, drop_level=True):
which levels are used. Levels can be referred by label or position.
copy : boolean, default True
Whether to make a copy of the data
drop_level, default True
drop_level : boolean, default True
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

bool vs. boolean?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What do you prefer?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

A quick count: ca 6 times bool is used and around 50 times boolan in all docstrings in frame.py.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

okay so go with boolean

If False, returns object with same levels as self.

Examples
Expand Down Expand Up @@ -2133,9 +2139,9 @@ def xs(self, key, axis=0, level=None, copy=True, drop_level=True):
_xs = xs

def lookup(self, row_labels, col_labels):
"""Label-based "fancy indexing" function for DataFrame. Given
equal-length arrays of row and column labels, return an array of the
values corresponding to each (row, col) pair.
"""Label-based "fancy indexing" function for DataFrame.
Given equal-length arrays of row and column labels, return an
array of the values corresponding to each (row, col) pair.

Parameters
----------
Expand All @@ -2146,13 +2152,11 @@ def lookup(self, row_labels, col_labels):

Notes
-----
Akin to

.. code-block:: python
Akin to::

result = []
for row, col in zip(row_labels, col_labels):
result.append(df.get_value(row, col))
result = []
for row, col in zip(row_labels, col_labels):
result.append(df.get_value(row, col))

Examples
--------
Expand Down Expand Up @@ -2467,14 +2471,14 @@ def dropna(self, axis=0, how='any', thresh=None, subset=None,
axis : {0, 1}, or tuple/list thereof
Pass tuple or list to drop on multiple axes
how : {'any', 'all'}
any : if any NA values are present, drop that label
all : if all values are NA, drop that label
* any : if any NA values are present, drop that label
* all : if all values are NA, drop that label
thresh : int, default None
int value : require that many non-NA values
subset : array-like
Labels along other axis to consider, e.g. if you are dropping rows
these would be a list of columns to include
inplace : bool, defalt False
inplace : boolean, defalt False
If True, do operation inplace and return None.

Returns
Expand Down Expand Up @@ -2725,7 +2729,7 @@ def sortlevel(self, level=0, axis=0, ascending=True, inplace=False):
----------
level : int
axis : {0, 1}
ascending : bool, default True
ascending : boolean, default True
inplace : boolean, default False
Sort the DataFrame without creating a new instance

Expand Down Expand Up @@ -2790,9 +2794,11 @@ def reorder_levels(self, order, axis=0):

Parameters
----------
order: list of int representing new level order.
(reference level by number not by key)
axis: where to reorder levels
order : list of int
List representing new level order. Reference level by number
not by key.
axis : int
Where to reorder levels.

Returns
-------
Expand Down Expand Up @@ -3057,8 +3063,10 @@ def combine_first(self, other):

Examples
--------
a's values prioritized, use values from b to fill holes:

>>> a.combine_first(b)
a's values prioritized, use values from b to fill holes


Returns
-------
Expand Down Expand Up @@ -3094,7 +3102,7 @@ def update(self, other, join='left', overwrite=True, filter_func=None,
filter_func : callable(1d-array) -> 1d-array<boolean>, default None
Can choose to replace values other than NA. Return True for values
that should be updated
raise_conflict : bool
raise_conflict : boolean
If True, will raise an error if the DataFrame and other both
contain data in the same place.
"""
Expand Down Expand Up @@ -3322,22 +3330,24 @@ def diff(self, periods=1):
def apply(self, func, axis=0, broadcast=False, raw=False, reduce=True,
args=(), **kwds):
"""
Applies function along input axis of DataFrame. Objects passed to
functions are Series objects having index either the DataFrame's index
(axis=0) or the columns (axis=1). Return type depends on whether passed
function aggregates
Applies function along input axis of DataFrame.

Objects passed to functions are Series objects having index
either the DataFrame's index (axis=0) or the columns (axis=1).
Return type depends on whether passed function aggregates

Parameters
----------
func : function
Function to apply to each column
Function to apply to each column/row
axis : {0, 1}
0 : apply function to each column
1 : apply function to each row
broadcast : bool, default False
* 0 : apply function to each column
* 1 : apply function to each row
broadcast : boolean, default False
For aggregation functions, return object of same size with values
propagated
reduce : bool, default True, try to apply reduction procedures
reduce : boolean, default True
Try to apply reduction procedures
raw : boolean, default False
If False, convert each row or column into a Series. If raw=True the
passed function will receive ndarray objects instead. If you are
Expand Down Expand Up @@ -3529,6 +3539,11 @@ def applymap(self, func):
Returns
-------
applied : DataFrame

See also
--------
DataFrame.apply : For operations on rows/columns

"""

# if we have a dtype == 'M8[ns]', provide boxed values
Expand Down Expand Up @@ -3611,6 +3626,7 @@ def join(self, other, on=None, how='left', lsuffix='', rsuffix='',
how : {'left', 'right', 'outer', 'inner'}
How to handle indexes of the two objects. Default: 'left'
for joining on index, None otherwise

* left: use calling frame's index
* right: use input frame's index
* outer: form union of indexes
Expand Down Expand Up @@ -3698,9 +3714,9 @@ def corr(self, method='pearson', min_periods=1):
Parameters
----------
method : {'pearson', 'kendall', 'spearman'}
pearson : standard correlation coefficient
kendall : Kendall Tau correlation coefficient
spearman : Spearman rank correlation
* pearson : standard correlation coefficient
* kendall : Kendall Tau correlation coefficient
* spearman : Spearman rank correlation
min_periods : int, optional
Minimum number of observations required per pair of columns
to have a valid result. Currently only available for pearson
Expand Down Expand Up @@ -3756,7 +3772,9 @@ def cov(self, min_periods=None):
-------
y : DataFrame

y contains the covariance matrix of the DataFrame's time series.
Notes
-----
`y` contains the covariance matrix of the DataFrame's time series.
The covariance is normalized by N-1 (unbiased estimator).
"""
numeric_df = self._get_numeric_data()
Expand Down Expand Up @@ -4156,9 +4174,9 @@ def mode(self, axis=0, numeric_only=False):
Parameters
----------
axis : {0, 1, 'index', 'columns'} (default 0)
0/'index' : get mode of each column
1/'columns' : get mode of each row
numeric_only : bool, default False
* 0/'index' : get mode of each column
* 1/'columns' : get mode of each row
numeric_only : boolean, default False
if True, only apply to numeric columns

Returns
Expand Down Expand Up @@ -4213,14 +4231,14 @@ def rank(self, axis=0, numeric_only=None, method='average',
numeric_only : boolean, default None
Include only float, int, boolean data
method : {'average', 'min', 'max', 'first'}
average: average rank of group
min: lowest rank in group
max: highest rank in group
first: ranks assigned in order they appear in the array
* average: average rank of group
* min: lowest rank in group
* max: highest rank in group
* first: ranks assigned in order they appear in the array
na_option : {'keep', 'top', 'bottom'}
keep: leave NA values where they are
top: smallest rank if ascending
bottom: smallest rank if descending
* keep: leave NA values where they are
* top: smallest rank if ascending
* bottom: smallest rank if descending
ascending : boolean, default True
False for ranks by high (1) to low (N)

Expand Down Expand Up @@ -4861,11 +4879,11 @@ def boxplot(self, column=None, by=None, ax=None, fontsize=None,
Can be any valid input to groupby
by : string or sequence
Column in the DataFrame to group by
ax : matplotlib axis object, default None
ax : matplotlib axis object, default None
fontsize : int or string
rot : int, default None
rot : int, default None
Rotation for ticks
grid : boolean, default None (matlab style default)
grid : boolean, default None (matlab style default)
Axis grid lines

Returns
Expand Down