Skip to content

Implement BetaNegativeBinomial distribution #258

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 15 commits into from
Nov 10, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/api_reference.rst
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ Distributions
Chi
DiscreteMarkovChain
GeneralizedPoisson
BetaNegativeBinomial
GenExtreme
R2D2M2CP
Skellam
Expand Down
8 changes: 7 additions & 1 deletion pymc_experimental/distributions/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,16 +18,22 @@
"""

from pymc_experimental.distributions.continuous import Chi, GenExtreme
from pymc_experimental.distributions.discrete import GeneralizedPoisson, Skellam
from pymc_experimental.distributions.discrete import (
BetaNegativeBinomial,
GeneralizedPoisson,
Skellam,
)
from pymc_experimental.distributions.histogram_utils import histogram_approximation
from pymc_experimental.distributions.multivariate import R2D2M2CP
from pymc_experimental.distributions.timeseries import DiscreteMarkovChain

__all__ = [
"BetaNegativeBinomial",
"DiscreteMarkovChain",
"GeneralizedPoisson",
"GenExtreme",
"R2D2M2CP",
"Skellam",
"histogram_approximation",
"Chi",
]
124 changes: 123 additions & 1 deletion pymc_experimental/distributions/discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@

import numpy as np
import pymc as pm
from pymc.distributions.dist_math import check_parameters, factln, logpow
from pymc.distributions.dist_math import betaln, check_parameters, factln, logpow
from pymc.distributions.shape_utils import rv_size_is_none
from pytensor import tensor as pt
from pytensor.tensor.random.op import RandomVariable
Expand Down Expand Up @@ -173,6 +173,125 @@ def logp(value, mu, lam):
)


class BetaNegativeBinomial:
R"""
Beta Negative Binomial distribution.

The pmf of this distribution is

.. math::

f(x \mid \alpha, \beta, r) = \frac{B(r + x, \alpha + \beta)}{B(r, \alpha)} \frac{\Gamma(x + \beta)}{x! \Gamma(\beta)}

where :math:`B` is the Beta function and :math:`\Gamma` is the Gamma function.

For more information, see https://en.wikipedia.org/wiki/Beta_negative_binomial_distribution.

.. plot::
:context: close-figs

import matplotlib.pyplot as plt
import numpy as np
from scipy.special import betaln, gammaln
def factln(x):
return gammaln(x + 1)
def logp(x, alpha, beta, r):
return (
betaln(r + x, alpha + beta)
- betaln(r, alpha)
+ gammaln(x + beta)
- factln(x)
- gammaln(beta)
)
plt.style.use('arviz-darkgrid')
x = np.arange(0, 25)
params = [
(1, 1, 1),
(1, 1, 10),
(1, 10, 1),
(1, 10, 10),
(10, 10, 10),
]
for alpha, beta, r in params:
pmf = np.exp(logp(x, alpha, beta, r))
plt.plot(x, pmf, "-o", label=r'$alpha$ = {}, $beta$ = {}, $r$ = {}'.format(alpha, beta, r))
plt.xlabel('x', fontsize=12)
plt.ylabel('f(x)', fontsize=12)
plt.legend(loc=1)
plt.show()

======== ======================================
Support :math:`x \in \mathbb{N}_0`
Mean :math:`{\begin{cases}{\frac {r\beta }{\alpha -1}}&{\text{if}}\ \alpha >1\\\infty &{\text{otherwise}}\ \end{cases}}`
Variance :math:`{\displaystyle {\begin{cases}{\frac {r\beta (r+\alpha -1)(\beta +\alpha -1)}{(\alpha -2){(\alpha -1)}^{2}}}&{\text{if}}\ \alpha >2\\\infty &{\text{otherwise}}\ \end{cases}}}`
======== ======================================

Parameters
----------
alpha : tensor_like of float
shape of the beta distribution (alpha > 0).
beta : tensor_like of float
shape of the beta distribution (beta > 0).
r : tensor_like of float
number of successes until the experiment is stopped (integer but can be extended to real)
"""

@staticmethod
def beta_negative_binomial_dist(alpha, beta, r, size):
if rv_size_is_none(size):
alpha, beta, r = pt.broadcast_arrays(alpha, beta, r)

p = pm.Beta.dist(alpha, beta, size=size)
return pm.NegativeBinomial.dist(p, r, size=size)

@staticmethod
def beta_negative_binomial_logp(value, alpha, beta, r):
res = (
betaln(r + value, alpha + beta)
- betaln(r, alpha)
+ pt.gammaln(value + beta)
- factln(value)
- pt.gammaln(beta)
)
res = pt.switch(
pt.lt(value, 0),
-np.inf,
res,
)

return check_parameters(
res,
alpha > 0,
beta > 0,
r > 0,
msg="alpha > 0, beta > 0, r > 0",
)

def __new__(cls, name, alpha, beta, r, **kwargs):
return pm.CustomDist(
name,
alpha,
beta,
r,
dist=cls.beta_negative_binomial_dist,
logp=cls.beta_negative_binomial_logp,
class_name="BetaNegativeBinomial",
**kwargs,
)

@classmethod
def dist(cls, alpha, beta, r, **kwargs):
return pm.CustomDist.dist(
alpha,
beta,
r,
dist=cls.beta_negative_binomial_dist,
logp=cls.beta_negative_binomial_logp,
class_name="BetaNegativeBinomial",
**kwargs,
)


class Skellam:
R"""
Skellam distribution.
Expand Down Expand Up @@ -228,6 +347,9 @@ class Skellam:

@staticmethod
def skellam_dist(mu1, mu2, size):
if rv_size_is_none(size):
mu1, mu2 = pt.broadcast_arrays(mu1, mu2)

Comment on lines +350 to +352
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

return pm.Poisson.dist(mu=mu1, size=size) - pm.Poisson.dist(mu=mu2, size=size)

@staticmethod
Expand Down
75 changes: 74 additions & 1 deletion pymc_experimental/tests/distributions/test_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,11 @@
)
from pytensor import config

from pymc_experimental.distributions import GeneralizedPoisson, Skellam
from pymc_experimental.distributions import (
BetaNegativeBinomial,
GeneralizedPoisson,
Skellam,
)


class TestGeneralizedPoisson:
Expand Down Expand Up @@ -122,6 +126,75 @@ def test_moment(self, mu, lam, size, expected):
assert_moment_is_expected(model, expected)


class TestBetaNegativeBinomial:
"""
Wrapper class so that tests of experimental additions can be dropped into
PyMC directly on adoption.
"""

def test_logp(self):
"""

Beta Negative Binomial logp function test values taken from R package as
there is currently no implementation in scipy.
https://github.com/scipy/scipy/issues/17330

The test values can be generated in R with the following code:

.. code-block:: r

library(extraDistr)

create.test.rows <- function(alpha, beta, r, x) {
logp <- dbnbinom(x, alpha, beta, r, log=TRUE)
paste0("(", paste(alpha, beta, r, x, logp, sep=", "), ")")
}

x <- c(0, 1, 250, 5000)
print(create.test.rows(1, 1, 1, x), quote=FALSE)
print(create.test.rows(1, 1, 10, x), quote=FALSE)
print(create.test.rows(1, 10, 1, x), quote=FALSE)
print(create.test.rows(10, 1, 1, x), quote=FALSE)
print(create.test.rows(10, 10, 10, x), quote=FALSE)

"""
alpha, beta, r, value = pt.scalars("alpha", "beta", "r", "value")
logp = pm.logp(BetaNegativeBinomial.dist(alpha, beta, r), value)
logp_fn = pytensor.function([value, alpha, beta, r], logp)

tests = [
# 1, 1, 1
(1, 1, 1, 0, -0.693147180559945),
(1, 1, 1, 1, -1.79175946922805),
(1, 1, 1, 250, -11.0548820266432),
(1, 1, 1, 5000, -17.0349862828565),
# 1, 1, 10
(1, 1, 10, 0, -2.39789527279837),
(1, 1, 10, 1, -2.58021682959232),
(1, 1, 10, 250, -8.82261694534392),
(1, 1, 10, 5000, -14.7359968760473),
# 1, 10, 1
(1, 10, 1, 0, -2.39789527279837),
(1, 10, 1, 1, -2.58021682959232),
(1, 10, 1, 250, -8.82261694534418),
(1, 10, 1, 5000, -14.7359968760446),
# 10, 1, 1
(10, 1, 1, 0, -0.0953101798043248),
(10, 1, 1, 1, -2.58021682959232),
(10, 1, 1, 250, -43.5891148758123),
(10, 1, 1, 5000, -76.2953173311091),
# 10, 10, 10
(10, 10, 10, 0, -5.37909807285049),
(10, 10, 10, 1, -4.17512526852455),
(10, 10, 10, 250, -21.781591505836),
(10, 10, 10, 5000, -53.4836799634603),
]
for test_alpha, test_beta, test_r, test_value, expected_logp in tests:
np.testing.assert_allclose(
logp_fn(test_value, test_alpha, test_beta, test_r), expected_logp
)


class TestSkellam:
def test_logp(self):
check_logp(
Expand Down