Skip to content

Added HiFi optimizations for add sub mul and div operators #5483

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 16 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
676 changes: 676 additions & 0 deletions 1.txt

Large diffs are not rendered by default.

17 changes: 11 additions & 6 deletions backends/cadence/aot/functions_hifi.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@
- op: add.out
kernels:
- arg_meta: null
kernel_name: torch::executor::add_out
kernel_name: impl::HiFi::add_out

- op: bmm.out
kernels:
Expand All @@ -45,12 +45,12 @@
- op: div.out
kernels:
- arg_meta: null
kernel_name: torch::executor::div_out
kernel_name: impl::HiFi::div_out

- op: div.out_mode
kernels:
- arg_meta: null
kernel_name: torch::executor::div_out_mode
kernel_name: impl::HiFi::div_out_mode

- op: embedding.out
kernels:
Expand All @@ -65,7 +65,7 @@
- op: mul.out
kernels:
- arg_meta: null
kernel_name: torch::executor::mul_out
kernel_name: impl::HiFi::mul_out

- op: permute_copy.out
kernels:
Expand All @@ -75,7 +75,7 @@
- op: sigmoid.out
kernels:
- arg_meta: null
kernel_name: torch::executor::sigmoid_out
kernel_name: impl::HiFi::sigmoid_out

- op: slice_copy.Tensor_out
kernels:
Expand All @@ -90,7 +90,12 @@
- op: sub.out
kernels:
- arg_meta: null
kernel_name: torch::executor::sub_out
kernel_name: impl::HiFi::sub_out

- op: tanh.out
kernels:
- arg_meta: null
kernel_name: impl::HiFi::tanh_out

- op: view_copy.out
kernels:
Expand Down
3 changes: 3 additions & 0 deletions backends/cadence/cadence.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,9 @@ set(CMAKE_CXX_COMPILER ${TOOLCHAIN_HOME}/bin/${CROSS_COMPILE_TARGET}-clang++)

set(CMAKE_C_FLAGS_INIT "-stdlib=libc++ -mtext-section-literals -mlongcalls")
set(CMAKE_CXX_FLAGS_INIT "-stdlib=libc++ -mtext-section-literals -mlongcalls")
#workaround for larger compilation time
set(CMAKE_CXX_FLAGS_INIT "${CMAKE_CXX_FLAGS_INIT} -fno-strict-aliasing")

set(CMAKE_SYSROOT ${TOOLCHAIN_HOME}/${SYSROOT_TARGET})
set(CMAKE_LINKER ${TOOLCHAIN_HOME}/bin/xt-ld)
add_link_options(-lm -stdlib=libc++ -Wl,--no-as-needed -static)
Expand Down
4 changes: 4 additions & 0 deletions backends/cadence/hifi/kernels/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,10 @@ add_library(
cadence_kernels
kernels.cpp
${EXECUTORCH_ROOT}/backends/cadence/hifi/third-party/nnlib/matmul_asym8uxasym8u_asym8u.cpp
${EXECUTORCH_ROOT}/backends/cadence/hifi/third-party/nnlib/xa_nn_elm_add_f32_broadcast.c
${EXECUTORCH_ROOT}/backends/cadence/hifi/third-party/nnlib/xa_nn_elm_div_f32_broadcast.c
${EXECUTORCH_ROOT}/backends/cadence/hifi/third-party/nnlib/xa_nn_elm_div_mode_f32_broadcast.c
${EXECUTORCH_ROOT}/backends/cadence/hifi/third-party/nnlib/xa_nn_elm_mul_f32_broadcast.c
)
# Let files say "include <executorch/path/to/header.h>".
set(_common_include_directories ${EXECUTORCH_ROOT}/..)
Expand Down
1 change: 0 additions & 1 deletion backends/cadence/hifi/kernels/kernels.h
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@
#include <stddef.h>
#include <xa_type_def.h>

namespace cadence {
namespace impl {
namespace HiFi {
namespace kernels {
Expand Down
22 changes: 16 additions & 6 deletions backends/cadence/hifi/operators/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,12 @@ endif()

# ATen compliant ops that are needed to run this model.
set(_aten_ops__srcs
"${EXECUTORCH_ROOT}/backends/cadence/hifi/operators/op_add.cpp"
"${EXECUTORCH_ROOT}/backends/cadence/hifi/operators/op_div.cpp"
"${EXECUTORCH_ROOT}/backends/cadence/hifi/operators/op_mul.cpp"
"${EXECUTORCH_ROOT}/backends/cadence/hifi/operators/op_sigmoid.cpp"
"${EXECUTORCH_ROOT}/backends/cadence/hifi/operators/op_sub.cpp"
"${EXECUTORCH_ROOT}/backends/cadence/hifi/operators/op_tanh.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/activation_ops_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/copy_ops_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/broadcast_util.cpp"
Expand All @@ -29,24 +35,28 @@ set(_aten_ops__srcs
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/reduce_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/repeat_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/slice_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_add.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_bmm.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_cat.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_clone.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_div.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_embedding.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_full.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_mul.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_permute_copy.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_sigmoid.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_slice_copy.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_softmax.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_split_with_sizes_copy.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_sub.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_to_copy.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_view_copy.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_where.cpp"
)
"${EXECUTORCH_ROOT}/kernels/portable/cpu/pattern/unary_ufunc_realhb_to_floath.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/activation_ops_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/broadcast_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/copy_ops_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/index_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/kernel_ops_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/matmul_ops_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/reduce_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/repeat_util.cpp"
)
add_library(aten_ops_cadence ${_aten_ops__srcs})
target_link_libraries(aten_ops_cadence PUBLIC executorch)
target_link_libraries(aten_ops_cadence PRIVATE cadence_kernels)
Expand Down
197 changes: 197 additions & 0 deletions backends/cadence/hifi/operators/op_add.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,197 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/

#include <executorch/backends/cadence/hifi/kernels/kernels.h>
#include <executorch/kernels/portable/cpu/scalar_utils.h>
#include <executorch/kernels/portable/cpu/util/broadcast_util.h>
#include <executorch/kernels/portable/cpu/util/functional_util.h>
#include <executorch/kernels/portable/cpu/util/kernel_ops_util.h>
#include <executorch/runtime/kernel/kernel_includes.h>
#include <executorch/runtime/platform/assert.h>

using exec_aten::Scalar;
using exec_aten::ScalarType;
using exec_aten::Tensor;
using executorch::runtime::can_cast;
using executorch::runtime::CppTypeToScalarType;
using executorch::runtime::KernelRuntimeContext;
using torch::executor::Error;

namespace impl {
namespace HiFi {
namespace native {

namespace {
template <
bool can_cast,
typename CTYPE_A,
typename CTYPE_B,
typename CTYPE_IN,
typename CTYPE_OUT>
struct AddInner;

template <
typename CTYPE_A,
typename CTYPE_B,
typename CTYPE_IN,
typename CTYPE_OUT>
struct AddInner<true, CTYPE_A, CTYPE_B, CTYPE_IN, CTYPE_OUT> {
static void
run(const Tensor& a, const Tensor& b, CTYPE_IN alpha_val, Tensor& out) {
torch::executor::apply_binary_elementwise_fn<CTYPE_A, CTYPE_B, CTYPE_OUT>(
// NOLINTNEXTLINE(facebook-hte-ConstantArgumentPassByValue)
[alpha_val](const CTYPE_A val_a, const CTYPE_B val_b) {
CTYPE_IN a_casted = static_cast<CTYPE_IN>(val_a);
CTYPE_IN b_casted = static_cast<CTYPE_IN>(val_b);
CTYPE_IN value = a_casted + alpha_val * b_casted;

return static_cast<CTYPE_OUT>(value);
},
a,
b,
out);
}
};

template <typename CTYPE_IN>
struct ReportCanCastBug {
static void run(const Tensor&, const Tensor&, CTYPE_IN, Tensor&) {
ET_DCHECK_MSG(false, "BUG: canCast should have been checked above");
}
};

template <
typename CTYPE_A,
typename CTYPE_B,
typename CTYPE_IN,
typename CTYPE_OUT>
struct AddInner<false, CTYPE_A, CTYPE_B, CTYPE_IN, CTYPE_OUT>
: public ReportCanCastBug<CTYPE_IN> {};

} // namespace

Tensor& add_out(
KernelRuntimeContext& ctx,
const Tensor& a,
const Tensor& b,
const Scalar& alpha,
Tensor& out) {
ET_KERNEL_CHECK(
ctx,
resize_to_broadcast_target_size(a, b, out) == Error::Ok,
InvalidArgument,
out);

ET_KERNEL_CHECK(
ctx,
executorch::runtime::tensor_is_realhbbf16_type(out),
InvalidArgument,
out);
ET_KERNEL_CHECK(
ctx, tensors_have_same_dim_order(a, b, out), InvalidArgument, out);

ScalarType a_type = a.scalar_type();
ScalarType b_type = b.scalar_type();
ScalarType alpha_type =
torch::executor::native::utils::get_scalar_dtype(alpha);
ScalarType common_type = promoteTypes(a_type, b_type, /*half_to_float*/ true);
ScalarType out_type = out.scalar_type();

ET_KERNEL_CHECK(ctx, canCast(common_type, out_type), InvalidArgument, out);
ET_KERNEL_CHECK(
ctx, check_alpha_type(alpha_type, common_type), InvalidArgument, out);

float alpha_val;
torch::executor::native::utils::extract_scalar(alpha, &alpha_val);

constexpr auto name = "add.out";
constexpr int kNnlibMaxDim = 4; /*fallback if broadcast and dim > 4 */

int a_dim = a.dim(), b_dim = b.dim(), out_dim = out.dim();
bool optimized = 1;
/*find broadcast*/
const bool a_is_broadcasted = !out.sizes().equals(a.sizes());
const bool b_is_broadcasted = !out.sizes().equals(b.sizes());
const bool broadcast = (a_is_broadcasted || b_is_broadcasted);
int max_dim = a.dim() > b.dim() ? a.dim() : b.dim();
max_dim = out.dim() > max_dim ? out.dim() : max_dim;

if ((out_type != ScalarType::Float) || (alpha_val != 1.0))
optimized = 0;

if ((a_dim == 0) || (b_dim == 0) )
optimized = 0;

if ((broadcast == 1) && (max_dim > kNnlibMaxDim))
optimized = 0;


if (optimized) {
const float* const a_data = a.const_data_ptr<float>();
const float* const b_data = b.const_data_ptr<float>();
float* const out_data = out.mutable_data_ptr<float>();

if(broadcast == 1) {
int out_shape[kNnlibMaxDim];
int inp1_shape[kNnlibMaxDim];
int inp2_shape[kNnlibMaxDim];

for (int i = 0; i < kNnlibMaxDim; i++) {
out_shape[i] = 1;
inp1_shape[i] = 1;
inp2_shape[i] = 1;
}

int off_o = kNnlibMaxDim - out.dim();
int off_a = kNnlibMaxDim - a.dim();
int off_b = kNnlibMaxDim - b.dim();

for (int i = 0; i < out.dim(); i++)
out_shape[i+off_o] = out.size(i);
for (int i = 0; i < a.dim(); i++)
inp1_shape[i+off_a] = a.size(i);
for (int i = 0; i < b.dim(); i++)
inp2_shape[i+off_b] = b.size(i);

xa_nn_elm_add_broadcast_4D_f32xf32_f32(
out_data, out_shape, a_data, inp1_shape, b_data, inp2_shape);
}
else
{
xa_nn_elm_add_f32xf32_f32(out_data, a_data, b_data, out.numel());
}

return out;
}

ET_SWITCH_REALHBBF16_TYPES(a_type, ctx, name, CTYPE_A, [&]() {
ET_SWITCH_REALHBBF16_TYPES(b_type, ctx, name, CTYPE_B, [&]() {
using CTYPE_IN = typename torch::executor::
promote_types<CTYPE_A, CTYPE_B, /*half_to_float*/ true>::type;
ET_DCHECK(CppTypeToScalarType<CTYPE_IN>::value == common_type);
CTYPE_IN alpha_val;
torch::executor::native::utils::extract_scalar(alpha, &alpha_val);

ET_SWITCH_REALHBBF16_TYPES(out_type, ctx, name, CTYPE_OUT, [&]() {
AddInner<
can_cast<CTYPE_IN, CTYPE_OUT>::value,
CTYPE_A,
CTYPE_B,
CTYPE_IN,
CTYPE_OUT>::run(a, b, alpha_val, out);
});
});
});

return out;
}


} // namespace native
} // namespace HiFi
} // namespace impl
Loading
Loading