Skip to content

Fix docstrings for Tokenizers #1739

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 25, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions docs/source/transforms.rst
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,14 @@ CLIPTokenizer

.. automethod:: forward

BERTTokenizer
----------------------

.. autoclass:: BERTTokenizer

.. automethod:: forward


VocabTransform
--------------

Expand Down
15 changes: 10 additions & 5 deletions torchtext/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -272,7 +272,6 @@ def forward(self, input: Any) -> Any:


class GPT2BPETokenizer(Module):
__jit_unused_properties__ = ["is_jitable"]
"""
Transform for GPT-2 BPE Tokenizer.

Expand All @@ -286,6 +285,8 @@ class GPT2BPETokenizer(Module):
:param return_tokens: Indicate whether to return split tokens. If False, it will return encoded token IDs as strings (default: False)
:type return_input: bool
"""

__jit_unused_properties__ = ["is_jitable"]
_seperator: torch.jit.Final[str]

def __init__(self, encoder_json_path: str, vocab_bpe_path: str, return_tokens: bool = False):
Expand Down Expand Up @@ -382,7 +383,6 @@ def __prepare_scriptable__(self):


class CLIPTokenizer(Module):
__jit_unused_properties__ = ["is_jitable"]
"""
Transform for CLIP Tokenizer. Based on Byte-Level BPE.

Expand Down Expand Up @@ -414,6 +414,7 @@ class CLIPTokenizer(Module):
:type return_input: bool
"""

__jit_unused_properties__ = ["is_jitable"]
_seperator: torch.jit.Final[str]

def __init__(
Expand Down Expand Up @@ -534,23 +535,25 @@ def __prepare_scriptable__(self):


class BERTTokenizer(Module):
__jit_unused_properties__ = ["is_jitable"]
"""
Transform for BERT Tokenizer.

Based on WordPiece algorithm introduced in paper:
https://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/37842.pdf

The backend kernel implementation is the modified form of https://github.com/LieluoboAi/radish.
See https://github.com/pytorch/text/pull/1707 summary for more details.
The backend kernel implementation is taken and modified from https://github.com/LieluoboAi/radish.

See PR https://github.com/pytorch/text/pull/1707 summary for more details.

The below code snippet shows how to use the BERT tokenizer using the pre-trained vocab files.

Example
>>> from torchtext.transforms import BERTTokenizer
>>> VOCAB_FILE = "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt"
>>> tokenizer = BERTTokenizer(vocab_path=VOCAB_FILE, do_lower_case=True, return_tokens=True)
>>> tokenizer("Hello World, How are you!") # single sentence input
>>> tokenizer(["Hello World","How are you!"]) # batch input

:param vocab_path: Path to pre-trained vocabulary file. The path can be either local or URL.
:type vocab_path: str
:param do_lower_case: Indicate whether to do lower case. (default: True)
Expand All @@ -561,6 +564,8 @@ class BERTTokenizer(Module):
:type return_tokens: bool
"""

__jit_unused_properties__ = ["is_jitable"]

def __init__(
self, vocab_path: str, do_lower_case: bool = True, strip_accents: Optional[bool] = None, return_tokens=False
) -> None:
Expand Down