About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Compute the maximum value along one or more ndarray dimensions according to a callback function.
npm install @stdlib/stats-max-by
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var maxBy = require( '@stdlib/stats-max-by' );
Computes the maximum value along one or more ndarray dimensions according to a callback function.
var array = require( '@stdlib/ndarray-array' );
var x = array( [ -1.0, 2.0, -3.0 ] );
function clbk( v ) {
return v * 2.0;
}
var y = maxBy( x, clbk );
// returns <ndarray>
var v = y.get();
// returns 4.0
The function has the following parameters:
- x: input ndarray. Must have a real-valued or "generic" data type.
- options: function options (optional).
- clbk: callback function.
- thisArg: callback function execution context (optional).
The invoked callback is provided three arguments:
- value: current array element.
- idx: current array element index.
- array: input ndarray.
To set the callback execution context, provide a thisArg
.
var array = require( '@stdlib/ndarray-array' );
var x = array( [ -1.0, 2.0, -3.0 ] );
function clbk( v ) {
this.count += 1;
return v * 2.0;
}
var ctx = {
'count': 0
};
var y = maxBy( x, clbk, ctx );
// returns <ndarray>
var v = y.get();
// returns 4.0
var count = ctx.count;
// returns 3
The function accepts the following options:
- dims: list of dimensions over which to perform a reduction. If not provided, the function performs a reduction over all elements in a provided input ndarray.
- dtype: output ndarray data type. Must be a real-valued or "generic" data type.
- keepdims: boolean indicating whether the reduced dimensions should be included in the returned ndarray as singleton dimensions. Default:
false
.
By default, the function performs a reduction over all elements in a provided input ndarray. To perform a reduction over specific dimensions, provide a dims
option.
var ndarray2array = require( '@stdlib/ndarray-to-array' );
var array = require( '@stdlib/ndarray-array' );
function clbk( v ) {
return v * 100.0;
}
var x = array( [ -1.0, 2.0, -3.0, 4.0 ], {
'shape': [ 2, 2 ],
'order': 'row-major'
});
var v = ndarray2array( x );
// returns [ [ -1.0, 2.0 ], [ -3.0, 4.0 ] ]
var opts = {
'dims': [ 0 ]
};
var y = maxBy( x, opts, clbk );
// returns <ndarray>
v = ndarray2array( y );
// returns [ -100.0, 400.0 ]
opts = {
'dims': [ 1 ]
};
y = maxBy( x, opts, clbk );
// returns <ndarray>
v = ndarray2array( y );
// returns [ 200.0, 400.0 ]
opts = {
'dims': [ 0, 1 ]
};
y = maxBy( x, opts, clbk );
// returns <ndarray>
v = y.get();
// returns 400.0
By default, the function excludes reduced dimensions from the output ndarray. To include the reduced dimensions as singleton dimensions, set the keepdims
option to true
.
var ndarray2array = require( '@stdlib/ndarray-to-array' );
var array = require( '@stdlib/ndarray-array' );
function clbk( v ) {
return v * 100.0;
}
var x = array( [ -1.0, 2.0, -3.0, 4.0 ], {
'shape': [ 2, 2 ],
'order': 'row-major'
});
var v = ndarray2array( x );
// returns [ [ -1.0, 2.0 ], [ -3.0, 4.0 ] ]
var opts = {
'dims': [ 0 ],
'keepdims': true
};
var y = maxBy( x, opts, clbk );
// returns <ndarray>
v = ndarray2array( y );
// returns [ [ -100.0, 400.0 ] ]
opts = {
'dims': [ 1 ],
'keepdims': true
};
y = maxBy( x, opts, clbk );
// returns <ndarray>
v = ndarray2array( y );
// returns [ [ 200.0 ], [ 400.0 ] ]
opts = {
'dims': [ 0, 1 ],
'keepdims': true
};
y = maxBy( x, opts, clbk );
// returns <ndarray>
v = ndarray2array( y );
// returns [ [ 400.0 ] ]
By default, the function returns an ndarray having a data type determined by the function's output data type policy. To override the default behavior, set the dtype
option.
var getDType = require( '@stdlib/ndarray-dtype' );
var array = require( '@stdlib/ndarray-array' );
function clbk( v ) {
return v * 100.0;
}
var x = array( [ -1.0, 2.0, -3.0 ], {
'dtype': 'generic'
});
var opts = {
'dtype': 'float64'
};
var y = maxBy( x, opts, clbk );
// returns <ndarray>
var dt = getDType( y );
// returns 'float64'
Computes the maximum value along one or more ndarray dimensions according to a callback function and assigns results to a provided output ndarray.
var array = require( '@stdlib/ndarray-array' );
var zeros = require( '@stdlib/ndarray-zeros' );
function clbk( v ) {
return v * 100.0;
}
var x = array( [ -1.0, 2.0, -3.0 ] );
var y = zeros( [] );
var out = maxBy.assign( x, y, clbk );
// returns <ndarray>
var v = out.get();
// returns 200.0
var bool = ( out === y );
// returns true
The method has the following parameters:
- x: input ndarray. Must have a real-valued or generic data type.
- out: output ndarray.
- options: function options (optional).
- clbk: callback function.
- thisArg: callback execution context (optional).
The method accepts the following options:
- dims: list of dimensions over which to perform a reduction. If not provided, the function performs a reduction over all elements in a provided input ndarray.
- A provided callback function should return a numeric value.
- If a provided callback function does not return any value (or equivalently, explicitly returns
undefined
), the value is ignored. - Setting the
keepdims
option totrue
can be useful when wanting to ensure that the output ndarray is broadcast-compatible with ndarrays having the same shape as the input ndarray. - The output data type policy only applies to the main function and specifies that, by default, the function must return an ndarray having a real-valued or "generic" data type. For the
assign
method, the output ndarray is allowed to have any supported output data type.
var filledarrayBy = require( '@stdlib/array-filled-by' );
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var getDType = require( '@stdlib/ndarray-dtype' );
var ndarray2array = require( '@stdlib/ndarray-to-array' );
var ndarray = require( '@stdlib/ndarray-ctor' );
var maxBy = require( '@stdlib/stats-max-by' );
// Define a function for generating an object having a random value:
function random() {
return {
'value': discreteUniform( 0, 20 )
};
}
// Generate an array of random objects:
var xbuf = filledarrayBy( 25, 'generic', random );
// Wrap in an ndarray:
var x = new ndarray( 'generic', xbuf, [ 5, 5 ], [ 5, 1 ], 0, 'row-major' );
console.log( ndarray2array( x ) );
// Define an accessor function:
function accessor( v ) {
return v.value * 100;
}
// Perform a reduction:
var opts = {
'dims': [ 0 ]
};
var y = maxBy( x, opts, accessor );
// Resolve the output array data type:
var dt = getDType( y );
console.log( dt );
// Print the results:
console.log( ndarray2array( y ) );
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.