-
Notifications
You must be signed in to change notification settings - Fork 74.8k
Closed
Labels
TF 2.0Issues relating to TensorFlow 2.0Issues relating to TensorFlow 2.0comp:kerasKeras related issuesKeras related issuestype:featureFeature requestsFeature requests
Description
Please make sure that this is a feature request. As per our GitHub Policy, we only address code/doc bugs, performance issues, feature requests and build/installation issues on GitHub. tag:feature_template
System information
- TensorFlow version (you are using): 2.0
- Are you willing to contribute it (Yes/No): No
Describe the feature and the current behavior/state.
for example:
weighted_categorical_column in sequence:
import tensorflow as tf
from tensorflow.python.feature_column.feature_column_v2 import SequenceCategoricalColumn
batch_tensor_dict = {'dog': [[-1,-1],[1,1],[2,-1],[0,1]],
'dog_weight': [[0.0,0.0],[1.0,2.0],[3.0,0.0],[4.0,5.0]]
}
fc_cat_dog = tf.feature_column.categorical_column_with_identity(key='dog',num_buckets=3)
fc_wei_dog = tf.feature_column.weighted_categorical_column(fc_cat_dog, 'dog_weight')
seq_dog = SequenceCategoricalColumn(fc_wei_dog)
seq_dog2 = tf.feature_column.sequence_categorical_column_with_identity('dog', 3)
ind_dog = tf.feature_column.indicator_column(seq_dog)
input_layer = tf.keras.experimental.SequenceFeatures([ind_dog])
seq_input, seq_len = input_layer(batch_tensor_dict)
seq_len_mask = tf.sequence_mask(seq_len)
print(seq_input)
pass
sequence or normal categorical_column in shared_embeddings:
import tensorflow as tf
import tensorflow.feature_column as fc
batch_tensor_dict = {'item_id': [-1,1,2,0],
'history_item_id_list': [[-1,-1],[1,1],[2,-1],[0,1]]
}
fc_cat_item_id = fc.categorical_column_with_identity('item_id', 3)
fc_seq_cat_history_item_id_list = fc.sequence_categorical_column_with_identity('history_item_id_list', 3)
fc_shared_emb_cols = fc.shared_embeddings(categorical_columns=[fc_cat_item_id, fc_seq_cat_history_item_id_list])
tf.keras.experimental.SequenceFeatures and tf.keras.layers.DenseFeatures both are not suitable for fc_shared_emb_cols.
Will this change the current api? How?
Who will benefit with this feature?
Any Other info.
Metadata
Metadata
Assignees
Labels
TF 2.0Issues relating to TensorFlow 2.0Issues relating to TensorFlow 2.0comp:kerasKeras related issuesKeras related issuestype:featureFeature requestsFeature requests