Skip to content

online ewma #46

Closed
Closed
@jreback

Description

@jreback

tis is an implementation of online ewma. its self contained, copying mostly the pandas ewma implementation (and exposing the outputs).

code

import typing
import numba
import numpy as np
from numpy import nan
def ewma(
    x: np.ndarray,
    *,
    alpha: float,
    min_periods: int,
    ignore_na: bool,
) -> typing.Tuple[
    np.ndarray,
    np.ndarray,
    np.ndarray
]:
    assert isinstance(x, np.ndarray)
    assert len(x.shape) == 1
    assert x.dtype == np.float64
    n: np.ndarray = np.empty_like(x, dtype=np.int_)
    w: np.ndarray = np.empty_like(x)
    y: np.ndarray = np.empty_like(x)
    if x.shape[0]:
        y_0: float = x[0]
        is_observation: bool = y_0 == y_0
        n_0: int = int(is_observation)
        w_0: float = 1.0
        y[0] = y_0 if n_0 >= min_periods else nan
        n[0] = n_0
        w[0] = w_0
        _inc_ewma(
            x,
            n,
            w,
            y,
            alpha,
            min_periods,
            ignore_na,
            n_0,
            w_0,
            y_0,
            1
        )
    return n, w, y
def inc_ewma(
    x: np.ndarray,
    *,
    alpha: float,
    min_periods: int,
    ignore_na: bool,
    n_minus_1: int,
    w_minus_1: float,
    y_minus_1: float
) -> typing.Tuple[
    np.ndarray,
    np.ndarray,
    np.ndarray
]:
    assert isinstance(x, np.ndarray)
    assert len(x.shape) == 1
    assert x.dtype == np.float64
    n: np.ndarray = np.empty_like(x, dtype=np.int_)
    w: np.ndarray = np.empty_like(x)
    y: np.ndarray = np.empty_like(x)
    _inc_ewma(
        x,
        n,
        w,
        y,
        alpha,
        min_periods,
        ignore_na,
        n_minus_1,
        w_minus_1,
        y_minus_1,
        0
    )
    return n, w, y
@numba.njit  # type: ignore
def _inc_ewma(
    x: np.ndarray,
    n: np.ndarray,
    w: np.ndarray,
    y: np.ndarray,
    alpha: float,
    min_periods: int,
    ignore_na: bool,
    n_i: int,
    w_i: float,
    y_i: float,
    i: int
) -> None:
    beta: float = 1.0 - alpha
    for i in range(i, len(x)):
        x_i: float = x[i]
        is_observation = x_i == x_i
        n_i += is_observation
        if y_i == y_i:
            if is_observation or not ignore_na:
                w_i *= beta
                if is_observation:
                    # avoid numerical errors on constant series
                    if y_i != x_i:
                        y_i = ((w_i * y_i) + x_i) / (w_i + 1.0)
                    w_i += 1.0
        elif is_observation:
            y_i = x_i
        y[i] = y_i if n_i >= min_periods else nan
        n[i] = n_i
        w[i] = w_i

tests

import unittest
import numpy as np
import pandas as pd
from incewma import ewma, inc_ewma
class IncEwmaTestCase(unittest.TestCase):
    def test_ewma(self) -> None:
        alpha = 0.5
        min_periods = 3
        ignore_na = False
        x = pd.Series(np.arange(10, dtype=np.float64) + 1.7)
        y: np.ndarray = x.ewm(
            alpha=alpha,
            min_periods=min_periods,
            adjust=True,
            ignore_na=ignore_na
        ).mean().to_numpy()
        n_all, w_all, y_all = ewma(
            x.to_numpy(),
            alpha=alpha,
            min_periods=min_periods,
            ignore_na=ignore_na
        )
        np.testing.assert_equal(np.arange(1, x.shape[0] + 1), n_all)
        np.testing.assert_allclose(y, y_all)
        k = 3
        n_k, w_k, y_k = inc_ewma(
            x.to_numpy()[-k:],
            alpha=alpha,
            min_periods=min_periods,
            ignore_na=ignore_na,
            n_minus_1=n_all[-(k + 1)],
            w_minus_1=w_all[-(k + 1)],
            y_minus_1=y_all[-(k + 1)]
        )
        np.testing.assert_equal(n_all[-k:], n_k)
        np.testing.assert_allclose(w_all[-k:], w_k)
        np.testing.assert_allclose(y[-k:], y_k)
    def test_ewma_empty(self) -> None:
        alpha = 0.5
        min_periods = 3
        ignore_na = False
        x = pd.Series(np.empty((0,), dtype=np.float64))
        y: np.ndarray = x.ewm(
            alpha=alpha,
            min_periods=min_periods,
            adjust=True,
            ignore_na=ignore_na
        ).mean().to_numpy()
        np.testing.assert_allclose(np.empty((0,), dtype=np.float64), y)
        n_all, w_all, y_all = ewma(
            x.to_numpy(),
            alpha=alpha,
            min_periods=min_periods,
            ignore_na=ignore_na
        )
        np.testing.assert_equal(np.empty((0,), dtype=np.int_), n_all)
        np.testing.assert_allclose(np.empty((0,), dtype=np.float64), w_all)
        np.testing.assert_allclose(np.empty((0,), dtype=np.float64), y_all)
        n_k, w_k, y_k = inc_ewma(
            x.to_numpy(),
            alpha=alpha,
            min_periods=min_periods,
            ignore_na=ignore_na,
            n_minus_1=1,
            w_minus_1=1.0,
            y_minus_1=1.0
        )
        np.testing.assert_equal(np.empty((0,), dtype=np.int_), n_k)
        np.testing.assert_allclose(np.empty((0,), dtype=np.float64), w_k)
        np.testing.assert_allclose(np.empty((0,), dtype=np.float64), y_k)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions